Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands.
J Nucl Med. 2024 Nov 1;65(11):1802-1807. doi: 10.2967/jnumed.124.268191.
The aim of this study was to validate a previously developed deep learning model in 5 independent clinical trials. The predictive performance of this model was compared with the international prognostic index (IPI) and 2 models incorporating radiomic PET/CT features (clinical PET and PET models). In total, 1,132 diffuse large B-cell lymphoma patients were included: 296 for training and 836 for external validation. The primary outcome was 2-y time to progression. The deep learning model was trained on maximum-intensity projections from PET/CT scans. The clinical PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, SUV, age, and performance status. The PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, and SUV Model performance was assessed using the area under the curve (AUC) and Kaplan-Meier curves. The IPI yielded an AUC of 0.60 on all external data. The deep learning model yielded a significantly higher AUC of 0.66 ( < 0.01). For each individual clinical trial, the model was consistently better than IPI. Radiomic model AUCs remained higher for all clinical trials. The deep learning and clinical PET models showed equivalent performance (AUC, 0.69; > 0.05). The PET model yielded the highest AUC of all models (AUC, 0.71; < 0.05). The deep learning model predicted outcome in all trials with a higher performance than IPI and better survival curve separation. This model can predict treatment outcome in diffuse large B-cell lymphoma without tumor delineation but at the cost of a lower prognostic performance than with radiomics.
本研究旨在验证先前开发的深度学习模型在 5 项独立临床试验中的性能。该模型的预测性能与国际预后指数(IPI)和 2 个纳入放射组学 PET/CT 特征的模型(临床 PET 和 PET 模型)进行了比较。共纳入 1132 例弥漫性大 B 细胞淋巴瘤患者:296 例用于训练,836 例用于外部验证。主要结局为 2 年无进展时间。深度学习模型基于 PET/CT 扫描的最大强度投影进行训练。临床 PET 模型包括代谢肿瘤体积、最大距离从最厚病变到另一个病变、SUV、年龄和表现状态。PET 模型包括代谢肿瘤体积、最大距离从最厚病变到另一个病变和 SUV。模型性能通过曲线下面积(AUC)和 Kaplan-Meier 曲线进行评估。IPI 在所有外部数据中的 AUC 为 0.60。深度学习模型的 AUC 显著更高,为 0.66(<0.01)。对于每个单独的临床试验,该模型始终优于 IPI。放射组学模型 AUC 在所有临床试验中仍然更高。深度学习和临床 PET 模型的性能相当(AUC,0.69;>0.05)。PET 模型的 AUC 最高(AUC,0.71;<0.05)。深度学习模型在所有试验中均能预测预后,其性能优于 IPI,且生存曲线分离更好。该模型可预测弥漫性大 B 细胞淋巴瘤的治疗结果,无需肿瘤勾画,但预后性能低于放射组学。