Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
Sci Rep. 2023 Aug 12;13(1):13111. doi: 10.1038/s41598-023-40218-1.
Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from F-fluorodeoxyglucose (F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmax was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL.
卷积神经网络(CNNs)可能会提高弥漫性大 B 细胞淋巴瘤(DLBCL)的反应预测能力。本研究旨在探讨使用 F-氟脱氧葡萄糖(F-FDG)正电子发射断层扫描(PET)基线扫描的最大强度投影(MIP)图像的 CNN 的可行性,以预测 2 年内进展时间(TTP)的概率,并将其与国际预后指数(IPI)进行比较,即一种临床使用的评分。分析了来自前瞻性临床试验(HOVON-84)的 296 例 DLBCL F-FDG PET/CT 基线扫描。使用冠状和矢状 MIP 进行交叉验证。外部数据集(340 例 DLBCL 患者)用于验证模型。评估了概率、代谢肿瘤体积和 Dmax 之间的关联。还评估了肿瘤合成去除后的 PET 扫描概率。该 CNN 提供了 2 年 TTP 预测,曲线下面积(AUC)为 0.74,优于基于 IPI 的模型(AUC=0.68)。此外,原始 MIP 中的高概率(>0.6)在去除肿瘤后大大降低(<0.4,通常)。这些发现表明,基于 MIP 的 CNN 能够预测 DLBCL 的治疗结果。