Suppr超能文献

用于识别语音用户交互中不同情绪的 EEG 数据集。

EEG Dataset for the Recognition of Different Emotions Induced in Voice-User Interaction.

机构信息

Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea.

Department of Industrial Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.

出版信息

Sci Data. 2024 Oct 3;11(1):1084. doi: 10.1038/s41597-024-03887-9.

Abstract

Electroencephalography (EEG)-based open-access datasets are available for emotion recognition studies, where external auditory/visual stimuli are used to artificially evoke pre-defined emotions. In this study, we provide a novel EEG dataset containing the emotional information induced during a realistic human-computer interaction (HCI) using a voice user interface system that mimics natural human-to-human communication. To validate our dataset via neurophysiological investigation and binary emotion classification, we applied a series of signal processing and machine learning methods to the EEG data. The maximum classification accuracy ranged from 43.3% to 90.8% over 38 subjects and classification features could be interpreted neurophysiologically. Our EEG data could be used to develop a reliable HCI system because they were acquired in a natural HCI environment. In addition, auxiliary physiological data measured simultaneously with the EEG data also showed plausible results, i.e., electrocardiogram, photoplethysmogram, galvanic skin response, and facial images, which could be utilized for automatic emotion discrimination independently from, as well as together with the EEG data via the fusion of multi-modal physiological datasets.

摘要

基于脑电图(EEG)的开放获取数据集可用于情感识别研究,其中使用外部听觉/视觉刺激来人为地引发预先定义的情绪。在这项研究中,我们提供了一个新的 EEG 数据集,其中包含使用模仿自然人与人之间通信的语音用户界面系统进行真实的人机交互(HCI)时产生的情感信息。为了通过神经生理学研究和二元情感分类来验证我们的数据集,我们将一系列信号处理和机器学习方法应用于 EEG 数据。在 38 名受试者中,最大分类准确率范围为 43.3%至 90.8%,分类特征可以进行神经生理学解释。我们的 EEG 数据可用于开发可靠的 HCI 系统,因为它们是在自然的 HCI 环境中采集的。此外,同时测量的辅助生理数据与 EEG 数据一起也显示出合理的结果,即心电图、光体积描记图、皮肤电反应和面部图像,这些数据可以通过融合多模态生理数据集,独立于 EEG 数据或与 EEG 数据一起用于自动情感识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf6/11449991/cbbb558e14b1/41597_2024_3887_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验