Gillespie Kevin, Baskys Algirdas, Pong Ian, Croteau Jean-Francois
Superconducting Magnets Group, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
European Organization for Nuclear Research, Genève 23, 1211, Geneva, Switzerland.
Sci Rep. 2024 Oct 3;14(1):23007. doi: 10.1038/s41598-024-73090-8.
We generated synthetic equiaxed grain structures using computer graphics software to explore the relationship between various grain size determination methods and true three-dimensional (3D) grain diameters. Mirroring grain measurement techniques, the synthetic 3D grain structures are imaged as 2D micrographs which are measured to yield 1D grain size parameters. Synthetic grain structures provide data at a mass scale and permit exploration of both polished and fractured surface micrographs, revealing one-to-one correspondence between exposed 2D grain cross-sections and individual 3D grains. Analysis of this correspondence yielded a procedure to approximate 3D equiaxed grain size and volume distributions based on the mode of the 2D fractograph grain size distribution. The 3D approximation procedure is shown to be less susceptible to different imaging conditions that affect small, undiscernible grains compared to the standard planimetric and linear intercept methods, which by design also tend to underestimate the 3D grain diameter. The procedure requires larger sample sizes to lower variance and a deeper analysis which could become more practical with machine learning (ML) models for grain boundary segmentation, which synthetic grain structures can help train. This work lays the foundation for analyzing other grain distributions such as columnar and composite grains in similar depth.
我们使用计算机图形软件生成了合成等轴晶粒结构,以探索各种晶粒尺寸测定方法与真实三维(3D)晶粒直径之间的关系。模拟晶粒测量技术,将合成的3D晶粒结构成像为2D显微照片,通过测量这些照片来获得1D晶粒尺寸参数。合成晶粒结构提供了大量数据,并允许对抛光和断裂表面显微照片进行探索,揭示了暴露的2D晶粒横截面与单个3D晶粒之间的一一对应关系。对这种对应关系的分析产生了一种基于2D断口金相图晶粒尺寸分布模式来近似3D等轴晶粒尺寸和体积分布的方法。与标准的面积测量法和线性截距法相比,该3D近似方法显示出对影响小的、不可分辨晶粒的不同成像条件不太敏感,而标准方法在设计上也往往会低估3D晶粒直径。该方法需要更大的样本量来降低方差,并且需要更深入的分析,随着用于晶界分割的机器学习(ML)模型的出现,这可能会变得更加实用,而合成晶粒结构可以帮助训练这些模型。这项工作为在类似深度分析其他晶粒分布(如柱状晶粒和复合晶粒)奠定了基础。