Suppr超能文献

口袋 DTA:一种先进的多模态架构,用于从靶标结合口袋的 3D 结构数据增强药物靶标亲和力预测。

PocketDTA: an advanced multimodal architecture for enhanced prediction of drug-target affinity from 3D structural data of target binding pockets.

机构信息

Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang 330031, China.

Institute of Mathematics and Interdisciplinary Sciences, Nanchang University, Nanchang 330031, China.

出版信息

Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae594.

Abstract

MOTIVATION

Accurately predicting the drug-target binding affinity (DTA) is crucial to drug discovery and repurposing. Although deep learning has been widely used in this field, it still faces challenges with insufficient generalization performance, inadequate use of 3D information, and poor interpretability.

RESULTS

To alleviate these problems, we developed the PocketDTA model. This model enhances the generalization performance by pre-trained models ESM-2 and GraphMVP. It ingeniously handles the first 3 (top-3) target binding pockets and drug 3D information through customized GVP-GNN Layers and GraphMVP-Decoder. In addition, it uses a bilinear attention network to enhance interpretability. Comparative analysis with state-of-the-art (SOTA) methods on the optimized Davis and KIBA datasets reveals that the PocketDTA model exhibits significant performance advantages. Further, ablation studies confirm the effectiveness of the model components, whereas cold-start experiments illustrate its robust generalization capabilities. In particular, the PocketDTA model has shown significant advantages in identifying key drug functional groups and amino acid residues via molecular docking and literature validation, highlighting its strong potential for interpretability.

AVAILABILITY AND IMPLEMENTATION

Code and data are available at: https://github.com/zhaolongNCU/PocketDTA.

摘要

动机

准确预测药物-靶标结合亲和力(DTA)对于药物发现和重新利用至关重要。尽管深度学习在这一领域得到了广泛应用,但它仍然面临着缺乏泛化性能、不能充分利用 3D 信息以及可解释性差等挑战。

结果

为了缓解这些问题,我们开发了 PocketDTA 模型。该模型通过预训练模型 ESM-2 和 GraphMVP 来提高泛化性能。它通过定制的 GVP-GNN 层和 GraphMVP-Decoder 巧妙地处理前 3 个(前 3 位)靶标结合口袋和药物 3D 信息。此外,它使用双线性注意网络来增强可解释性。在优化后的 Davis 和 KIBA 数据集上与最先进的(SOTA)方法进行的比较分析表明,PocketDTA 模型表现出显著的性能优势。此外,消融研究证实了模型组件的有效性,而冷启动实验则说明了其强大的泛化能力。特别是,PocketDTA 模型通过分子对接和文献验证,在识别关键药物功能基团和氨基酸残基方面表现出显著优势,突出了其强大的可解释性潜力。

可用性和实现

代码和数据可在以下网址获得:https://github.com/zhaolongNCU/PocketDTA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b343/11502498/357a3301dacd/btae594f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验