Suppr超能文献

NHGNN-DTA:一种用于可解释药物-靶标结合亲和力预测的节点自适应混合图神经网络。

NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction.

机构信息

Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.

Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan.

出版信息

Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad355.

Abstract

MOTIVATION

Large-scale prediction of drug-target affinity (DTA) plays an important role in drug discovery. In recent years, machine learning algorithms have made great progress in DTA prediction by utilizing sequence or structural information of both drugs and proteins. However, sequence-based algorithms ignore the structural information of molecules and proteins, while graph-based algorithms are insufficient in feature extraction and information interaction.

RESULTS

In this article, we propose NHGNN-DTA, a node-adaptive hybrid neural network for interpretable DTA prediction. It can adaptively acquire feature representations of drugs and proteins and allow information to interact at the graph level, effectively combining the advantages of both sequence-based and graph-based approaches. Experimental results have shown that NHGNN-DTA achieved new state-of-the-art performance. It achieved the mean squared error (MSE) of 0.196 on the Davis dataset (below 0.2 for the first time) and 0.124 on the KIBA dataset (3% improvement). Meanwhile, in the case of cold start scenario, NHGNN-DTA proved to be more robust and more effective with unseen inputs than baseline methods. Furthermore, the multi-head self-attention mechanism endows the model with interpretability, providing new exploratory insights for drug discovery. The case study on Omicron variants of SARS-CoV-2 illustrates the efficient utilization of drug repurposing in COVID-19.

AVAILABILITY AND IMPLEMENTATION

The source code and data are available at https://github.com/hehh77/NHGNN-DTA.

摘要

动机

大规模预测药物-靶标亲和力(DTA)在药物发现中起着重要作用。近年来,机器学习算法通过利用药物和蛋白质的序列或结构信息,在 DTA 预测方面取得了巨大进展。然而,基于序列的算法忽略了分子和蛋白质的结构信息,而基于图的算法在特征提取和信息交互方面则不足。

结果

在本文中,我们提出了 NHGNN-DTA,这是一种用于可解释 DTA 预测的节点自适应混合神经网络。它可以自适应地获取药物和蛋白质的特征表示,并允许在图级别进行信息交互,有效地结合了基于序列和基于图的方法的优势。实验结果表明,NHGNN-DTA 实现了新的最先进的性能。它在 Davis 数据集上的均方误差(MSE)达到 0.196(首次低于 0.2),在 KIBA 数据集上达到 0.124(提高了 3%)。同时,在冷启动场景下,NHGNN-DTA 证明对于未见的输入比基线方法更稳健和更有效。此外,多头自注意力机制赋予了模型可解释性,为药物发现提供了新的探索性见解。对 SARS-CoV-2 的 Omicron 变体的案例研究说明了药物重新定位在 COVID-19 中的有效利用。

可用性和实现

源代码和数据可在 https://github.com/hehh77/NHGNN-DTA 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81f8/10287904/c48f09fc608c/btad355f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验