Suppr超能文献

使用机器学习原子间势的硅堆叠纳米片晶体管的热学、力学和电学性质

Thermal, mechanical, and electrical properties of Si-stacked nanosheet transistors using machine learning interatomic potentials.

作者信息

Saleh Mohamed Ahmed, Abdelhamid Hamdy M, Bayoumi Amr M

机构信息

Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology, 6th October City Giza, Egypt, Giza, 12578, EGYPT.

Electrical Engineering, Ajman University of Science and Technology College of Engineering and Information Technology, Ajman city, Ajman, Ajman, 0000, UNITED ARAB EMIRATES.

出版信息

Nanotechnology. 2024 Oct 4. doi: 10.1088/1361-6528/ad8357.

Abstract

Thermal and mechanical properties play a key role in optimizing the performance of nanoelectronic devices. In this study, the lattice thermal conductivity (κL) and elastic constants of Si nanosheets at different sheet thicknesses were determined using recently developed machine learning interatomic potentials (MLIPs). A Si nanosheet with a minimum thickness of 10 atomic layers was used for model training to predict the properties of sheets with greater thicknesses. The training dataset was efficiently constructed using stochastic sampling of the potential energy surface (PES). Density functional theory (DFT) calculations were used to extract the MLIP, which served as the basis for further analysis. The Moment Tensor Potential (MTP) method was used to obtain the MLIP in this study. The results showed that, at sub-6 nm sheet thickness, the thermal conductivity dropped to ∼ 7 % of its bulk value, whereas some stiffness tensor components dropped to ∼ 3 % of the bulk values. These findings contribute to the understanding of heat transport and mechanical behavior of ultrathin Si nanosheets, which is crucial for designing and optimizing nanoelectronic devices. The technological implications of the extracted parameters on nanosheet field-effect transistor (NS-FET) performance at advanced technology nodes were evaluated using TCAD device simulations.

摘要

热学和力学性能在优化纳米电子器件性能方面起着关键作用。在本研究中,使用最近开发的机器学习原子间势(MLIPs)确定了不同厚度的硅纳米片的晶格热导率(κL)和弹性常数。使用最小厚度为10个原子层的硅纳米片进行模型训练,以预测更厚硅纳米片的性能。利用势能面(PES)的随机采样有效地构建了训练数据集。采用密度泛函理论(DFT)计算来提取MLIP,作为进一步分析的基础。本研究采用矩张量势(MTP)方法获得MLIP。结果表明,在片厚小于6nm时,热导率降至其体值的约7%,而一些刚度张量分量降至体值的约3%。这些发现有助于理解超薄硅纳米片的热输运和力学行为,这对于设计和优化纳米电子器件至关重要。利用TCAD器件模拟评估了提取的参数对先进技术节点处纳米片场效应晶体管(NS-FET)性能的技术影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验