Suppr超能文献

原子级建模的力学性能:机器学习原子间势的兴起。

Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials.

机构信息

Chair of Computational Science and Simulation Technology, Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.

Cluster of Excellence PhoenixD (Photonics, Optics, And Engineering-Innovation Across Disciplines), Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany.

出版信息

Mater Horiz. 2023 Jun 6;10(6):1956-1968. doi: 10.1039/d3mh00125c.

Abstract

Since the birth of the concept of machine learning interatomic potentials (MLIPs) in 2007, a growing interest has been developed in the replacement of empirical interatomic potentials (EIPs) with MLIPs, in order to conduct more accurate and reliable molecular dynamics calculations. As an exciting novel progress, in the last couple of years the applications of MLIPs have been extended towards the analysis of mechanical and failure responses, providing novel opportunities not heretofore efficiently achievable, neither by EIPs nor by density functional theory (DFT) calculations. In this minireview, we first briefly discuss the basic concepts of MLIPs and outline popular strategies for developing a MLIP. Next, by considering several examples of recent studies, the robustness of MLIPs in the analysis of the mechanical properties will be highlighted, and their advantages over EIP and DFT methods will be emphasized. MLIPs furthermore offer astonishing capabilities to combine the robustness of the DFT method with continuum mechanics, enabling the first-principles multiscale modeling of mechanical properties of nanostructures at the continuum level. Last but not least, the common challenges of MLIP-based molecular dynamics simulations of mechanical properties are outlined and suggestions for future investigations are proposed.

摘要

自 2007 年机器学习原子间势(MLIPs)概念诞生以来,人们越来越感兴趣用 MLIP 取代经验原子间势(EIPs),以进行更准确和可靠的分子动力学计算。作为一个令人兴奋的新进展,在过去几年中,MLIP 的应用已经扩展到机械和失效响应的分析,为以前既不能通过 EIPs 也不能通过密度泛函理论(DFT)计算有效地实现的提供了新的机会。在这篇综述中,我们首先简要讨论了 MLIP 的基本概念,并概述了开发 MLIP 的流行策略。接下来,通过考虑最近的几项研究示例,突出了 MLIP 在分析力学性能方面的稳健性,并强调了它们相对于 EIP 和 DFT 方法的优势。MLIP 还提供了令人惊讶的能力,可以将 DFT 方法的稳健性与连续介质力学相结合,从而能够在连续体水平上对纳米结构的力学性能进行基于第一性原理的多尺度建模。最后但同样重要的是,概述了基于 MLIP 的力学性能分子动力学模拟的常见挑战,并提出了未来研究的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验