Suppr超能文献

利用放射组学技术从胸部 CT 中分离单个椎体,用于机会性骨质疏松症筛查。

Utilizing radiomics techniques to isolate a single vertebral body from chest CT for opportunistic osteoporosis screening.

机构信息

Department of Orthopaedic Surgery, The Second Affiliated Hospital of Fujian Medical University, 950 Donghai Street, Fengze District, Quanzhou, Fujian, 362000, China.

Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China.

出版信息

BMC Musculoskelet Disord. 2024 Oct 4;25(1):785. doi: 10.1186/s12891-024-07903-2.

Abstract

PURPOSE

Opportunistic osteoporosis screening, conducted during routine medical examinations such as chest computed tomography (CT), presents a potential solution for early detection. This study aims to investigate the feasibility of utilizing radiomics technology based on chest CT images to screen for opportunistic osteoporosis.

METHODS

This Study is a Multicenter Retrospective Investigation. Relevant clinical data, including demographics and DXA results, would be collected for each participant. The radiomics analysis in this study focuses on the extraction of features from the 11th or 12th thoracic vertebral bodies from chest CT images. SVM machine learning models would be trained using these radiomic features, with DXA results as the ground truth for osteoporosis classification.

RESULTS

In the training group, Clinical models had an accuracy of 0.684 and an AUC of 0.744, Radiomics models had an accuracy of 0.828 and an AUC of 0.896, Nomogram models had an accuracy of 0.839 and an AUC of 0.901. In the internal validation group, Clinical models had an accuracy of 0.769 and an AUC of 0.829, Radiomics models had an accuracy of 0.832 and an AUC of 0.892, Nomogram models had an accuracy of 0.839 and an AUC of 0.918. In the external validation group, Clinical models had an accuracy of 0.715 and an AUC of 0.741, Radiomics models had an accuracy of 0.777 and an AUC of 0.796, Nomogram models had an accuracy of 0.785 and an AUC of 0.807. In all three datasets, the Nomogram model exhibited a statistically significant difference in screening effectiveness compared to the clinical models.

CONCLUSION

Our research demonstrates that by leveraging radiomics features extracted from a single thoracic spine using chest CT, and incorporating these features with patient basic information, opportunistic screening for osteoporosis can be achieved.

摘要

目的

在常规体检(如胸部 CT)中进行机会性骨质疏松症筛查,为早期发现提供了一种潜在的解决方案。本研究旨在探讨利用胸部 CT 图像的放射组学技术进行机会性骨质疏松症筛查的可行性。

方法

本研究为多中心回顾性研究。将为每位参与者收集相关临床数据,包括人口统计学信息和 DXA 结果。本研究的放射组学分析重点是从胸部 CT 图像中提取第 11 或第 12 胸椎的特征。使用这些放射组学特征训练 SVM 机器学习模型,DXA 结果作为骨质疏松症分类的真实值。

结果

在训练组中,临床模型的准确率为 0.684,AUC 为 0.744,放射组学模型的准确率为 0.828,AUC 为 0.896,列线图模型的准确率为 0.839,AUC 为 0.901。在内部验证组中,临床模型的准确率为 0.769,AUC 为 0.829,放射组学模型的准确率为 0.832,AUC 为 0.892,列线图模型的准确率为 0.839,AUC 为 0.918。在外部验证组中,临床模型的准确率为 0.715,AUC 为 0.741,放射组学模型的准确率为 0.777,AUC 为 0.796,列线图模型的准确率为 0.785,AUC 为 0.807。在所有三个数据集,列线图模型的筛查效果与临床模型相比具有统计学显著差异。

结论

本研究表明,通过利用胸部 CT 提取单个胸椎的放射组学特征,并将这些特征与患者基本信息相结合,可以实现骨质疏松症的机会性筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/767f/11451174/75ec74ffad12/12891_2024_7903_Fig1_HTML.jpg

相似文献

1
8
Effectiveness of opportunistic osteoporosis screening on chest CT using the DCNN model.
BMC Musculoskelet Disord. 2024 Feb 27;25(1):176. doi: 10.1186/s12891-024-07297-1.
9
Prediction of osteoporosis using radiomics analysis derived from single source dual energy CT.
BMC Musculoskelet Disord. 2023 Feb 7;24(1):100. doi: 10.1186/s12891-022-06096-w.

本文引用的文献

1
To Evaluate the Value of Vertebral Body Cortical Thickness in Predicting Osteoporosis by Opportunistic CT.
Acad Radiol. 2024 Apr;31(4):1491-1500. doi: 10.1016/j.acra.2023.08.041. Epub 2023 Sep 30.
3
The axial and sagittal CT values of the 7th thoracic vertebrae in screening for osteoporosis and osteopenia.
Clin Radiol. 2023 Oct;78(10):763-771. doi: 10.1016/j.crad.2023.07.006. Epub 2023 Jul 27.
4
Osteoporosis screening using machine learning and electromagnetic waves.
Sci Rep. 2023 Aug 8;13(1):12865. doi: 10.1038/s41598-023-40104-w.
5
Routine chest CT combined with the osteoporosis self-assessment tool for Asians (OSTA): a screening tool for patients with osteoporosis.
Skeletal Radiol. 2023 Jun;52(6):1169-1178. doi: 10.1007/s00256-022-04255-7. Epub 2022 Dec 15.
6
Real-world effectiveness of osteoporosis treatments in Germany.
Arch Osteoporos. 2022 Aug 31;17(1):119. doi: 10.1007/s11657-022-01156-z.
7
Current Status of the Diagnosis and Management of Osteoporosis.
Int J Mol Sci. 2022 Aug 21;23(16):9465. doi: 10.3390/ijms23169465.
8
Opportunistic osteoporosis screening using chest CT with artificial intelligence.
Osteoporos Int. 2022 Dec;33(12):2547-2561. doi: 10.1007/s00198-022-06491-y. Epub 2022 Aug 6.
10
Radiomics analysis based on lumbar spine CT to detect osteoporosis.
Eur Radiol. 2022 Nov;32(11):8019-8026. doi: 10.1007/s00330-022-08805-4. Epub 2022 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验