Suppr超能文献

基于混合变压器卷积神经网络的常规 CT 骨质疏松症筛查放射组学模型。

Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT.

机构信息

Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, People's Republic of China.

Shenyang Institute of Automation, Chinese Academy of Sciences, 110016, Shenyang, People's Republic of China.

出版信息

BMC Med Imaging. 2024 Mar 14;24(1):62. doi: 10.1186/s12880-024-01240-5.

Abstract

OBJECTIVE

Early diagnosis of osteoporosis is crucial to prevent osteoporotic vertebral fracture and complications of spine surgery. We aimed to conduct a hybrid transformer convolutional neural network (HTCNN)-based radiomics model for osteoporosis screening in routine CT.

METHODS

To investigate the HTCNN algorithm for vertebrae and trabecular segmentation, 92 training subjects and 45 test subjects were employed. Furthermore, we included 283 vertebral bodies and randomly divided them into the training cohort (n = 204) and test cohort (n = 79) for radiomics analysis. Area receiver operating characteristic curves (AUCs) and decision curve analysis (DCA) were applied to compare the performance and clinical value between radiomics models and Hounsfield Unit (HU) values to detect dual-energy X-ray absorptiometry (DXA) based osteoporosis.

RESULTS

HTCNN algorithm revealed high precision for the segmentation of the vertebral body and trabecular compartment. In test sets, the mean dice scores reach 0.968 and 0.961. 12 features from the trabecular compartment and 15 features from the entire vertebral body were used to calculate the radiomics score (rad score). Compared with HU values and trabecular rad-score, the vertebrae rad-score suggested the best efficacy for osteoporosis and non-osteoporosis discrimination (training group: AUC = 0.95, 95%CI 0.91-0.99; test group: AUC = 0.97, 95%CI 0.93-1.00) and the differences were significant in test group according to the DeLong test (p < 0.05).

CONCLUSIONS

This retrospective study demonstrated the superiority of the HTCNN-based vertebrae radiomics model for osteoporosis discrimination in routine CT.

摘要

目的

骨质疏松症的早期诊断对于预防骨质疏松性椎体骨折和脊柱手术并发症至关重要。本研究旨在基于混合变压器卷积神经网络(HTCNN)建立一种用于常规 CT 骨质疏松症筛查的放射组学模型。

方法

为了研究 HTCNN 算法在椎体和小梁分割中的应用,我们共纳入了 92 名训练对象和 45 名测试对象。此外,我们还纳入了 283 个椎体,并将其随机分为训练队列(n=204)和测试队列(n=79)进行放射组学分析。我们应用面积受试者工作特征曲线(AUC)和决策曲线分析(DCA)来比较放射组学模型和 Hounsfield 单位(HU)值检测双能 X 射线吸收法(DXA)诊断骨质疏松症的性能和临床价值。

结果

HTCNN 算法在椎体和小梁分割中具有较高的精度。在测试集中,平均 Dice 评分分别达到 0.968 和 0.961。我们从小梁区提取了 12 个特征,从整个椎体提取了 15 个特征,用于计算放射组学评分(rad score)。与 HU 值和小梁 rad-score 相比,椎体 rad-score 对骨质疏松症和非骨质疏松症的鉴别效能最佳(训练组:AUC=0.95,95%CI 0.91-0.99;测试组:AUC=0.97,95%CI 0.93-1.00),并且在测试组中,根据 DeLong 检验,椎体 rad-score 的差异具有统计学意义(p<0.05)。

结论

本回顾性研究表明,基于 HTCNN 的椎体放射组学模型在常规 CT 中具有鉴别骨质疏松症的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c50f/10938662/59c7366c2543/12880_2024_1240_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验