Corbin Nadège, Trotier Aurelien J, Anandra Serge, Kadalie Emile, Dallet Laurence, Miraux Sylvain, Ribot Emeline J
Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS, University Bordeaux, Bordeaux, France.
Biomedical Imaging platform pIBIO, UAR3767, CNRS, Bordeaux, France.
Magn Reson Med. 2025 Mar;93(3):1026-1042. doi: 10.1002/mrm.30328. Epub 2024 Oct 4.
Several barriers prevent the use of whole-brain T mapping in routine use despite increasing interest in this parameter. One of the main barriers is the long scan time resulting in patient discomfort and motion corrupted data. To address this challenge, a method for accurate whole-brain T mapping with a limited acquisition time and motion correction capabilities is investigated.
A 3D radial multi-echo spin-echo sequence was implemented with optimized sampling trajectory enabling the estimation of intra-scan motion, subsequently used to correct the raw data. Motion corrected echo images are then reconstructed with linear subspace constrained reconstruction. Experiments were carried out on phantom and volunteers at 3T to evaluate the accuracy of the T estimation, the sensitivity to lesions and the efficiency of the correction on motion corrupted data.
Whole-brain T mapping acquired in less than 7 min enabled the depiction of lesions in the white matter with longer T. Data retrospectively corrupted with typical motion traces of pediatric patients highly benefited from the motion correction by reducing the error in T estimates within the lesions. All datasets acquired on seven volunteers, with deliberate motion, also showed that motion corrupted T maps could be improved with the retrospective motion correction both at the voxel level and the structure level.
A whole-brain T mapping sequence with retrospective intra-scan motion correction and reasonable acquisition time is proposed. The method necessitates advanced iterative reconstruction strategies but no additional navigator, external device, or increased scan time is required.
尽管对全脑T值映射这一参数的兴趣日益增加,但仍有几个障碍阻碍其在常规临床中的应用。主要障碍之一是扫描时间长,这会导致患者不适以及数据因运动而受损。为应对这一挑战,研究了一种在有限采集时间内实现精确全脑T值映射并具备运动校正能力的方法。
实施了一种3D径向多回波自旋回波序列,其采样轨迹经过优化,能够估计扫描内运动,随后用于校正原始数据。然后采用线性子空间约束重建法重建经运动校正的回波图像。在3T场强下对体模和志愿者进行实验,以评估T值估计的准确性、对病变的敏感性以及对运动受损数据的校正效率。
在不到7分钟的时间内获取的全脑T值映射能够显示白质中T值较长的病变。用儿科患者的典型运动轨迹对数据进行回顾性损伤后,通过减少病变内T值估计的误差,运动校正使数据受益匪浅。在七名志愿者身上故意制造运动后采集的所有数据集也表明,无论是在体素水平还是结构水平,回顾性运动校正都能改善因运动受损的T值映射图。
提出了一种具有回顾性扫描内运动校正且采集时间合理的全脑T值映射序列。该方法需要先进的迭代重建策略,但无需额外的导航器、外部设备或增加扫描时间。