Suppr超能文献

微处理器介导的 pri-let-7 miRNA 加工的结构景观。

The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs.

机构信息

W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.

Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA.

出版信息

Mol Cell. 2024 Nov 7;84(21):4175-4190.e6. doi: 10.1016/j.molcel.2024.09.008. Epub 2024 Oct 4.

Abstract

MicroRNA (miRNA) biogenesis is initiated upon cleavage of a primary miRNA (pri-miRNA) hairpin by the Microprocessor (MP), composed of the Drosha RNase III enzyme and its partner DGCR8. Multiple pri-miRNA sequence motifs affect MP recognition, fidelity, and efficiency. Here, we performed cryoelectron microscopy (cryo-EM) and biochemical studies of several let-7 family pri-miRNAs in complex with human MP. We show that MP has the structural plasticity to accommodate a range of pri-miRNAs. These structures revealed key features of the 5' UG sequence motif, more comprehensively represented as the "flipped U with paired N" (fUN) motif. Our analysis explains how cleavage of class-II pri-let-7 members harboring a bulged nucleotide generates a non-canonical precursor with a 1-nt 3' overhang. Finally, the MP-SRSF3-pri-let-7f1 structure reveals how SRSF3 contributes to MP fidelity by interacting with the CNNC motif and Drosha's Piwi/Argonaute/Zwille (PAZ)-like domain. Overall, this study sheds light on the mechanisms for flexible recognition, accurate cleavage, and regulated processing of different pri-miRNAs by MP.

摘要

miRNA(miRNA)生物发生是由 Microprocessor(MP)切割初级 miRNA(pri-miRNA)发夹启动的,MP 由 Drosha RNase III 酶及其伴侣 DGCR8 组成。多个 pri-miRNA 序列基序影响 MP 的识别、保真度和效率。在这里,我们通过冷冻电子显微镜(cryo-EM)和生化研究了几种与人类 MP 复合的 let-7 家族 pri-miRNAs。我们表明,MP 具有结构可塑性,可以容纳多种 pri-miRNAs。这些结构揭示了 5'UG 序列基序的关键特征,更全面地表示为“配对 N 的翻转 U”(fUN)基序。我们的分析解释了为什么切割含有凸起核苷酸的 II 类 pri-let-7 成员会产生具有 1-nt 3'突出的非典型前体。最后,MP-SRSF3-pri-let-7f1 结构揭示了 SRSF3 如何通过与 CNNC 基序和 Drosha 的 Piwi/Argonaute/Zwille(PAZ)样结构域相互作用来提高 MP 的保真度。总体而言,这项研究阐明了 MP 对不同 pri-miRNA 进行灵活识别、精确切割和调控加工的机制。

相似文献

1
The structural landscape of Microprocessor-mediated processing of pri-let-7 miRNAs.
Mol Cell. 2024 Nov 7;84(21):4175-4190.e6. doi: 10.1016/j.molcel.2024.09.008. Epub 2024 Oct 4.
2
The structural landscape of Microprocessor mediated pri- miRNA processing.
bioRxiv. 2024 Aug 21:2024.05.09.593372. doi: 10.1101/2024.05.09.593372.
3
Structural Basis for pri-miRNA Recognition by Drosha.
Mol Cell. 2020 May 7;78(3):423-433.e5. doi: 10.1016/j.molcel.2020.02.024. Epub 2020 Mar 27.
4
SRSF3 recruits DROSHA to the basal junction of primary microRNAs.
RNA. 2018 Jul;24(7):892-898. doi: 10.1261/rna.065862.118. Epub 2018 Apr 3.
5
Bulges control pri-miRNA processing in a position and strand-dependent manner.
RNA Biol. 2021 Nov;18(11):1716-1726. doi: 10.1080/15476286.2020.1868139. Epub 2020 Dec 31.
6
7
Pri-miRNA cleavage assays for the Microprocessor complex.
Methods Enzymol. 2023;692:217-230. doi: 10.1016/bs.mie.2023.02.022. Epub 2023 Mar 13.
8
Cryo-EM Structures of Human Drosha and DGCR8 in Complex with Primary MicroRNA.
Mol Cell. 2020 May 7;78(3):411-422.e4. doi: 10.1016/j.molcel.2020.02.016. Epub 2020 Mar 27.
9
Functional Anatomy of the Human Microprocessor.
Cell. 2015 Jun 4;161(6):1374-87. doi: 10.1016/j.cell.2015.05.010. Epub 2015 May 28.
10
Noncanonical processing by animal Microprocessor.
Mol Cell. 2023 Jun 1;83(11):1810-1826.e8. doi: 10.1016/j.molcel.2023.05.004.

引用本文的文献

1
ERH promotes primary microRNA processing beyond cluster assistance.
Nat Commun. 2025 Aug 25;16(1):7913. doi: 10.1038/s41467-025-63015-y.
2
Structural features within precursor microRNA-20a regulate Dicer-TRBP processing.
bioRxiv. 2025 May 11:2025.05.07.652689. doi: 10.1101/2025.05.07.652689.
3
Assessing Microprocessor complex mutations with a Microsensor system.
RNA. 2025 Jun 16;31(7):896-915. doi: 10.1261/rna.080338.124.
5
The molecular basis of Human FN3K mediated phosphorylation of glycated substrates.
Nat Commun. 2025 Jan 22;16(1):941. doi: 10.1038/s41467-025-56207-z.
6
The biogenesis and regulation of animal microRNAs.
Nat Rev Mol Cell Biol. 2025 Apr;26(4):276-296. doi: 10.1038/s41580-024-00805-0. Epub 2024 Dec 19.
7
The molecular basis of Human FN3K mediated phosphorylation of glycated substrate.
bioRxiv. 2024 Aug 5:2024.08.05.606604. doi: 10.1101/2024.08.05.606604.

本文引用的文献

1
Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024 Jun;630(8016):493-500. doi: 10.1038/s41586-024-07487-w. Epub 2024 May 8.
2
Parameters of clustered suboptimal miRNA biogenesis.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2306727120. doi: 10.1073/pnas.2306727120. Epub 2023 Oct 3.
3
microRNAs in action: biogenesis, function and regulation.
Nat Rev Genet. 2023 Dec;24(12):816-833. doi: 10.1038/s41576-023-00611-y. Epub 2023 Jun 28.
4
Structure of the human DICER-pre-miRNA complex in a dicing state.
Nature. 2023 Mar;615(7951):331-338. doi: 10.1038/s41586-023-05723-3. Epub 2023 Feb 22.
5
SRSF7 and SRSF3 depend on RNA sequencing motifs and secondary structures to regulate Microprocessor.
Life Sci Alliance. 2023 Feb 7;6(4). doi: 10.26508/lsa.202201779. Print 2023 Apr.
6
A quantitative map of human primary microRNA processing sites.
Mol Cell. 2021 Aug 19;81(16):3422-3439.e11. doi: 10.1016/j.molcel.2021.07.002. Epub 2021 Jul 27.
7
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.
8
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
10
Functional Atlas of Primary miRNA Maturation by the Microprocessor.
Mol Cell. 2020 Dec 3;80(5):892-902.e4. doi: 10.1016/j.molcel.2020.10.028. Epub 2020 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验