Suppr超能文献

新型机器学习技术进一步明确无关供体选择以优化移植结果。

Novel machine learning technique further clarifies unrelated donor selection to optimize transplantation outcomes.

作者信息

Spellman Stephen R, Sparapani Rodney, Maiers Martin, Shaw Bronwen E, Laud Purushottam, Bupp Caitrin, He Meilun, Devine Steven M, Logan Brent R

机构信息

Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN.

Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI.

出版信息

Blood Adv. 2024 Dec 10;8(23):6082-6087. doi: 10.1182/bloodadvances.2024013756.

Abstract

We investigated the impact of donor characteristics on outcomes in allogeneic hematopoietic cell transplantation (HCT) recipients using a novel machine learning approach, the Nonparametric Failure Time Bayesian Additive Regression Trees (NFT BART). NFT BART models were trained on data from 10 016 patients who underwent a first HLA-A, B, C, and DRB1 matched unrelated donor (MUD) HCT between 2016 and 2019, reported to the Center for International Blood and Marrow Transplant Research, then validated on an independent cohort of 1802 patients. The NFT BART models were adjusted based on recipient, disease, and transplant variables. We defined a clinically meaningful impact on overall survival (OS) or event-free survival (EFS; survival without relapse, graft failure, or moderate to severe chronic graft-versus-host disease) as >1% difference in predicted outcome at 3 years. Characteristics with <1% impact (within a zone of indifference) were not considered to be clinically relevant. Donor cytomegalovirus, parity, HLA-DQB1, and HLA-DPB1 T-cell epitope matching fell within the zone of indifference. The only significant donor factor that associated with OS was age, in which, compared with 18-year-old donors, donors aged ≥31 years old were associated with lower OS. Both donor age (≤32 years) and use of a male donor, regardless of recipient sex, improved EFS. We, therefore, recommend selecting the earliest available donor within the 18 to 30 years age range for HCT to optimize OS. If several donors in the 18 to 30 years age range are available, a male donor may be chosen to optimize EFS.

摘要

我们采用一种新型机器学习方法——非参数失效时间贝叶斯加法回归树(NFT BART),研究了供体特征对异基因造血细胞移植(HCT)受者结局的影响。NFT BART模型是根据2016年至2019年间向国际血液和骨髓移植研究中心报告的10016例接受首次HLA - A、B、C和DRB1匹配无关供体(MUD)HCT的患者数据进行训练的,然后在一个由1802例患者组成的独立队列中进行验证。NFT BART模型根据受者、疾病和移植变量进行了调整。我们将对总生存期(OS)或无事件生存期(EFS;无复发、移植物失败或中度至重度慢性移植物抗宿主病的生存期)具有临床意义的影响定义为3年时预测结局的差异>1%。影响<1%(在无差异区域内)的特征不被认为具有临床相关性。供体巨细胞病毒、生育状况、HLA - DQB1和HLA - DPB1 T细胞表位匹配均在无差异区域内。与OS相关的唯一显著供体因素是年龄,与18岁供体相比,≥31岁的供体与较低的OS相关。供体年龄(≤32岁)和使用男性供体,无论受者性别如何,均能改善EFS。因此,我们建议为HCT选择18至30岁年龄范围内最早可用的供体以优化OS。如果有多个18至30岁年龄范围内的供体可用,可以选择男性供体以优化EFS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d60/11652765/547068ca6707/BLOODA_ADV-2024-013756-ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验