Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore.
Office for Healthcare Transformation, Ministry of Health (MOHT), Singapore, Republic of Singapore.
Sci Rep. 2024 Oct 5;14(1):23222. doi: 10.1038/s41598-024-73978-5.
Mental health issues have increased substantially since the onset of the COVID-19 pandemic. However, health policymakers do not have adequate data and tools to predict mental health demand, especially amid a crisis. Using time-series data collected in Singapore, this study examines if and how algorithmically measured emotion indicators from Twitter posts can help forecast emergency mental health needs. We measured the mental health needs during 549 days from 1 July 2020 to 31 December 2021 using the public's daily visits to the emergency room of the country's largest psychiatric hospital and the number of users with "crisis" state assessed through a government-initiated online mental health self-help portal. Pairwise Granger-causality tests covering lag length from 1 day to 5 days indicated that forecast models using Twitter joy, anger and sadness emotions as predictors perform significantly better than baseline models using past mental health needs data alone (e.g., Joy Intensity on IMH Visits, χ2 = 14·9, P < ·001***; Sadness Count on Mindline Crisis, χ2 = 4·6, P = ·031*, with a one-day lag length). The findings highlight the potential of new early indicators for tracking emerging public mental health needs.
自 COVID-19 大流行以来,心理健康问题大幅增加。然而,卫生政策制定者没有足够的数据和工具来预测心理健康需求,尤其是在危机期间。本研究使用从新加坡收集的时间序列数据,检验了从 Twitter 帖子中算法测量的情绪指标是否以及如何有助于预测紧急心理健康需求。我们使用该国最大精神病院急诊室的公众每日就诊次数和通过政府发起的在线心理健康自助门户评估的“危机”状态的用户数量,从 2020 年 7 月 1 日至 2021 年 12 月 31 日期间,对 549 天的心理健康需求进行了测量。包括 1 天至 5 天滞后长度的成对格兰杰因果检验表明,使用 Twitter 快乐、愤怒和悲伤情绪作为预测因子的预测模型明显优于仅使用过去心理健康需求数据的基准模型(例如,在 IMH 就诊中使用快乐强度,χ2 = 14.9,P < 0.001***;在 Mindline 危机中使用悲伤计数,χ2 = 4.6,P = 0.031*,滞后长度为 1 天)。研究结果强调了跟踪新出现的公众心理健康需求的新早期指标的潜力。