Qasim Muhammad, Månsson Kristofer, Balakrishnan Narayanaswamy
Jönköping International Business School, Jönköping University, Jönköping, Sweden.
Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada.
Stat Methods Med Res. 2025 Feb;34(2):201-223. doi: 10.1177/09622802241281035. Epub 2024 Nov 15.
Valid instrumental variables (IVs) must not directly impact the outcome variable and must also be uncorrelated with nonmeasured variables. However, in practice, IVs are likely to be invalid. The existing methods can lead to large bias relative to standard errors in situations with many weak and invalid instruments. In this paper, we derive a LASSO procedure for the -class IV estimation methods in the linear IV model. In addition, we propose the jackknife IV method by using LASSO to address the problem of many weak invalid instruments in the case of heteroscedastic data. The proposed methods are robust for estimating causal effects in the presence of many invalid and valid instruments, with theoretical assurances of their execution. In addition, two-step numerical algorithms are developed for the estimation of causal effects. The performance of the proposed estimators is demonstrated via Monte Carlo simulations as well as an empirical application. We use Mendelian randomization as an application, wherein we estimate the causal effect of body mass index on the health-related quality of life index using single nucleotide polymorphisms as instruments for body mass index.
有效的工具变量(IVs)不能直接影响结果变量,并且还必须与未测量的变量不相关。然而,在实际中,工具变量很可能是无效的。在存在许多弱工具变量和无效工具变量的情况下,现有方法相对于标准误差可能会导致较大偏差。在本文中,我们推导了线性工具变量模型中 - 类工具变量估计方法的套索程序。此外,我们通过使用套索提出了折刀法工具变量方法,以解决异方差数据情况下许多弱无效工具变量的问题。所提出的方法在存在许多无效和有效工具变量的情况下估计因果效应时具有鲁棒性,并对其执行具有理论保证。此外,还开发了用于估计因果效应的两步数值算法。通过蒙特卡罗模拟以及实证应用展示了所提出估计量的性能。我们将孟德尔随机化作为一个应用,其中我们使用单核苷酸多态性作为体重指数的工具变量来估计体重指数对健康相关生活质量指数的因果效应。