Olinger Bradley, Banarjee Reema, Dey Amit, Tsitsipatis Dimitrios, Tanaka Toshiko, Ram Anjana, Nyunt Thedoe, Daya Gulzar, Peng Zhongsheng, Cui Linna, Candia Julián, Simonsick Eleanor M, Gorospe Myriam, Walker Keenan A, Ferrucci Luigi, Basisty Nathan
Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA.
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
medRxiv. 2024 Aug 3:2024.08.01.24311368. doi: 10.1101/2024.08.01.24311368.
Cellular senescence increases with age and contributes to age-related declines and pathologies. We identified circulating biomarkers of senescence associated with diverse clinical traits in humans to facilitate future non-invasive assessment of individual senescence burden and efficacy testing of novel senotherapeutics. Using a novel nanoparticle-based proteomic workflow, we profiled the senescence-associated secretory phenotype (SASP) in monocytes and examined these proteins in plasma samples (N = 1060) from the Baltimore Longitudinal Study of Aging (BLSA). Machine learning models trained on monocyte SASP associated with several age-related phenotypes in a test cohort, including body fat composition, blood lipids, inflammation, and mobility-related traits, among others. Notably, a subset of SASP-based predictions, including a 'high impact' SASP panel that predicts age- and obesity-related clinical traits, were validated in InCHIANTI, an independent aging cohort. These results demonstrate the clinical relevance of the circulating SASP and identify relevant biomarkers of senescence that could inform future clinical studies.
细胞衰老随年龄增长而增加,并导致与年龄相关的机能衰退和病理变化。我们鉴定出与人类多种临床特征相关的衰老循环生物标志物,以促进未来对个体衰老负担的非侵入性评估以及新型衰老治疗药物的疗效测试。使用一种基于新型纳米颗粒的蛋白质组学工作流程,我们分析了单核细胞中与衰老相关的分泌表型(SASP),并在来自巴尔的摩纵向衰老研究(BLSA)的血浆样本(N = 1060)中检测了这些蛋白质。机器学习模型在测试队列中针对与几种年龄相关表型相关的单核细胞SASP进行训练,这些表型包括身体脂肪组成、血脂、炎症和与活动能力相关的特征等。值得注意的是,基于SASP的一组预测,包括一个预测与年龄和肥胖相关临床特征的“高影响力”SASP面板,在独立的衰老队列InCHIANTI中得到了验证。这些结果证明了循环SASP的临床相关性,并确定了相关的衰老生物标志物,可为未来的临床研究提供信息。