Suppr超能文献

强迫症的功能连接组学:ENIGMA-OCD 联合会的静息态 mega 分析和机器学习分类。

The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium.

机构信息

Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.

Amsterdam Neuroscience, Amsterdam, The Netherlands.

出版信息

Mol Psychiatry. 2023 Oct;28(10):4307-4319. doi: 10.1038/s41380-023-02077-0. Epub 2023 May 2.

Abstract

Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen's d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen's d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level.

摘要

目前关于强迫症(OCD)的功能连接的知识是基于小规模研究的,限制了结果的普遍性。此外,大多数研究只关注预先定义的区域或功能网络,而不是整个大脑的连接。在这里,我们使用来自 ENIGMA-OCD 联盟的 28 个独立样本中的 1024 名 OCD 患者和 1028 名健康对照者的数据进行了 mega 分析,研究了 OCD 患者和健康对照者之间静息状态功能连接的差异。我们评估了全脑功能连接的区域和网络水平的组间差异,并使用机器学习分析研究了功能连接是否可以作为个体水平识别患者状态的生物标志物。 mega 分析显示 OCD 患者存在广泛的功能连接异常,表现为全局连接性降低(Cohen's d:-0.27 至-0.13)和少数连接性增强,主要与丘脑有关(Cohen's d:0.19 至 0.22)。大多数连接性降低都位于感觉运动网络内,没有发现额纹状体异常。总体而言,分类性能较差,受试者工作特征曲线(AUC)下面积(AUC)评分为 0.567 至 0.673,药物治疗患者(AUC=0.702)比未药物治疗患者(AUC=0.608)和健康对照者的分类性能更好。这些发现为 OCD 的现有病理生理学模型提供了部分支持,并强调了感觉运动网络在 OCD 中的重要作用。然而,静息状态连接目前还不能提供准确的生物标志物来识别个体水平的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0df/10827654/50193ba662d7/41380_2023_2077_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验