Suppr超能文献

利用随机投影保留人类大规模脑连接指纹的可识别性

PRESERVING HUMAN LARGE-SCALE BRAIN CONNECTIVITY FINGERPRINT IDENTIFIABILITY WITH RANDOM PROJECTIONS.

作者信息

Duong-Tran Duy, Magsino Mark, Goñi Joaquín, Shen Li

机构信息

Department of Mathematics, United States Naval Academy, Annapolis, Maryland, USA.

Dept. of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635372. Epub 2024 Aug 22.

Abstract

The complex etiology of various neurodegenerative diseases and psychiatric disorders, especially at the individual level, has posed unmatched challenges to the advancement of personalized medicine. Recent technical advancements in functional magnetic resonance imaging has enabled researchers to map brain large-scale connectivity at an unprecedented level of subject precision. Nonetheless, along with the early dawn of promises in personalized medicine using various neuroimaging modalities rose the challenge of clinical utility of brain connectomics (e.g., functional connectomes). Besides many established challenges of functional connectome utility such as edge reliability, there exists an easily overlooked challenge that does not get the same level of attention: computationality of functional connectome. To improve clinical utility of functional connectomics, we propose a random projection method that would preserve a practically similar level of subject identifiability while sampling and retaining only a proportion of functional edges in subjects' functional connectome. Our work pave a way towards computational improvements, hence clinical utility, of functional connectomes while not compromising the integrity of biomarkers learnt from whole-brain large-scale functional connectivity imaging modality.

摘要

各种神经退行性疾病和精神疾病的复杂病因,尤其是在个体层面,给个性化医疗的发展带来了前所未有的挑战。功能磁共振成像技术的最新进展使研究人员能够以前所未有的个体精度绘制大脑大规模连接图谱。尽管如此,随着使用各种神经成像模式的个性化医疗前景初现,大脑连接组学(如功能连接组)的临床实用性也面临挑战。除了功能连接组实用性的许多既定挑战,如边缘可靠性外,还存在一个容易被忽视且未得到同等关注的挑战:功能连接组的计算性。为了提高功能连接组学的临床实用性,我们提出了一种随机投影方法,该方法在对受试者功能连接组中的功能边进行采样并仅保留一部分的同时,能保持几乎相似的个体可识别水平。我们的工作为功能连接组的计算改进以及临床实用性铺平了道路,同时不损害从全脑大规模功能连接成像模式中获得的生物标志物的完整性。

相似文献

本文引用的文献

4
Improving Functional Connectome Fingerprinting with Degree-Normalization.利用度归一化提高功能连接指纹图谱
Brain Connect. 2022 Mar;12(2):180-192. doi: 10.1089/brain.2020.0968. Epub 2021 Aug 23.
6
GEFF: Graph embedding for functional fingerprinting.GEFF:用于功能指纹识别的图嵌入
Neuroimage. 2020 Nov 1;221:117181. doi: 10.1016/j.neuroimage.2020.117181. Epub 2020 Jul 20.
7
Trait-like variants in human functional brain networks.人类功能大脑网络中的特质样变体。
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22851-22861. doi: 10.1073/pnas.1902932116. Epub 2019 Oct 14.
10
A multi-modal parcellation of human cerebral cortex.人类大脑皮层的多模态分区
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验