Chung Daniel J, Lee Somin Mindy, Kaker Vasu, Zhao Yongyi, Bin Irbaz, Perera Sudheesha, Sasankan Prabhu, Tang George, Kazzi Brigitte, Kuo Po-Chih, Celi Leo A, Kpodonu Jacques
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada.
JACC Adv. 2024 Sep 25;3(9):101196. doi: 10.1016/j.jacadv.2024.101196. eCollection 2024 Sep.
Ejection fraction (EF) estimation informs patient plans in the ICU, and low EF can indicate ventricular systolic dysfunction, which increases the risk of adverse events including heart failure. Automated echocardiography models are an attractive solution for high-variance human EF estimation, and key to this goal are echocardiogram vector embeddings, which are a critical resource for computational researchers.
The authors aimed to extract the vector embeddings from each echocardiogram in the EchoNet dataset using a classifier trained to classify EF as healthy (>50%) or unhealthy (<= 50%) to create an embeddings dataset for computational researchers.
We repurposed an R3D transformer to classify whether patient EF is below or above 50%. Training, validation, and testing were done on the EchoNet dataset of 10,030 echocardiograms, and the resulting model generated embeddings for each of these videos.
We extracted 400-dimensional vector embeddings for each of the 10,030 EchoNet echocardiograms using the trained R3D model, which achieved a test AUC of 0.916 and 87.5% accuracy, approaching the performance of comparable studies.
We present 10,030 vector embeddings learned by this model as a resource to the cardiology research community, as well as the trained model itself. These vectors enable algorithmic improvements and multimodal applications within automated echocardiography, benefitting the research community and those with ventricular systolic dysfunction (https://github.com/Team-Echo-MIT/r3d-v0-embeddings).
射血分数(EF)估计为重症监护病房(ICU)的患者治疗计划提供依据,低EF可能表明心室收缩功能障碍,这会增加包括心力衰竭在内的不良事件风险。自动超声心动图模型是解决人类EF估计高变异性问题的一个有吸引力的方案,而超声心动图向量嵌入是实现这一目标的关键,对计算研究人员来说是一种关键资源。
作者旨在使用经过训练以将EF分类为健康(>50%)或不健康(<=50%)的分类器,从EchoNet数据集中的每个超声心动图中提取向量嵌入,为计算研究人员创建一个嵌入数据集。
我们重新利用一个R3D变压器来分类患者的EF是低于还是高于50%。在包含10,030个超声心动图的EchoNet数据集上进行训练、验证和测试,所得模型为这些视频中的每一个生成嵌入。
我们使用经过训练的R3D模型为10,030个EchoNet超声心动图中的每一个提取了400维向量嵌入,该模型的测试AUC为0.916,准确率为87.5%,接近同类研究的性能。
我们将该模型学习到的10,030个向量嵌入以及训练好的模型本身作为资源提供给心脏病学研究社区。这些向量能够在自动超声心动图中实现算法改进和多模态应用,使研究社区以及患有心室收缩功能障碍的患者受益(https://github.com/Team-Echo-MIT/r3d-v0-embeddings)。