Ihdayhid Abdul Rahman, Sehly Amro, He Albert, Joyner Jack, Flack Julien, Konstantopoulos John, Newby David E, Williams Michelle C, Ko Brian S, Chow Benjamin J W, Dwivedi Girish
Fiona Stanley Hospital, Perth, Australia.
Artrya Ltd, Perth, Australia.
JACC Adv. 2024 Mar 6;3(9):100861. doi: 10.1016/j.jacadv.2024.100861. eCollection 2024 Sep.
Coronary computed tomography angiography (CCTA) has emerged as a reliable noninvasive modality to assess coronary artery stenosis and high-risk plaque (HRP). However, CCTA assessment of stenosis and HRP is time-consuming and requires specialized training, limiting its clinical translation.
The aim of this study is to develop and validate a fully automated deep learning system capable of characterizing stenosis severity and HRP on CCTA.
A deep learning system was trained to assess stenosis and HRP on CCTA scans from 570 patients in multiple centers. Stenosis severity was categorized as >0%, 1 to 49%, ≥50%, and ≥70%. HRP was defined as low attenuation plaque (≤30 HU), positive remodeling (≥10% diameter), and spotty calcification (<3 mm). The model was then tested on 769 patients (3,012 vessels) for stenosis severity and 45 patients (325 vessels) for HRP.
Our deep learning system achieved 93.5% per-vessel agreement within 1 Coronary Artery Disease-Reporting and Data System (CAD-RADS) category for stenosis. Diagnostic performance for per-vessel stenosis was very good for sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve with: >0% stenosis: 90.6%, 88.8%, 83.4%, 93.9%, 89.7%, respectively; ≥50% stenosis: 87.1%, 92.3%, 60.9%, 98.1%, 89.7%, respectively. Similarly, the per-vessel HRP feature achieved very good diagnostic performance with an area under the curve of 0.80, 0.79, and 0.77 for low attenuation plaque, spotty calcification, and positive remodeling, respectively.
A fully automated unsupervised deep learning system can rapidly evaluate stenosis severity and characterize HRP with very good diagnostic performance on CCTA.
冠状动脉计算机断层扫描血管造影(CCTA)已成为评估冠状动脉狭窄和高危斑块(HRP)的一种可靠的非侵入性检查方法。然而,CCTA对狭窄和HRP的评估耗时且需要专门培训,限制了其临床应用。
本研究旨在开发并验证一种能够在CCTA上对狭窄严重程度和HRP进行特征描述的全自动深度学习系统。
训练一个深度学习系统,以评估来自多个中心的570例患者的CCTA扫描图像上的狭窄和HRP。狭窄严重程度分为>0%、1%至49%、≥50%和≥70%。HRP定义为低衰减斑块(≤30 HU)、正向重构(直径≥10%)和点状钙化(<3 mm)。然后,该模型在769例患者(3012支血管)上进行狭窄严重程度测试,在45例患者(325支血管)上进行HRP测试。
我们的深度学习系统在1个冠状动脉疾病报告和数据系统(CAD-RADS)类别内对狭窄的血管一致性达到93.5%。血管狭窄的诊断性能在敏感性、特异性、阳性预测值、阴性预测值和曲线下面积方面都非常好,对于>0%狭窄分别为:90.6%、88.8%、83.4%、93.9%、89.7%;对于≥50%狭窄分别为:87.1%、92.3%、60.9%、98.1%、89.7%。同样,血管HRP特征在低衰减斑块、点状钙化和正向重构的曲线下面积分别为0.80、0.79和0.77,诊断性能也非常好。
一个全自动无监督的深度学习系统可以在CCTA上快速评估狭窄严重程度并对HRP进行特征描述,诊断性能非常好。