Suppr超能文献

使用无监督全自动深度学习技术评估冠状动脉狭窄和高危斑块。

Coronary Artery Stenosis and High-Risk Plaque Assessed With an Unsupervised Fully Automated Deep Learning Technique.

作者信息

Ihdayhid Abdul Rahman, Sehly Amro, He Albert, Joyner Jack, Flack Julien, Konstantopoulos John, Newby David E, Williams Michelle C, Ko Brian S, Chow Benjamin J W, Dwivedi Girish

机构信息

Fiona Stanley Hospital, Perth, Australia.

Artrya Ltd, Perth, Australia.

出版信息

JACC Adv. 2024 Mar 6;3(9):100861. doi: 10.1016/j.jacadv.2024.100861. eCollection 2024 Sep.

Abstract

BACKGROUND

Coronary computed tomography angiography (CCTA) has emerged as a reliable noninvasive modality to assess coronary artery stenosis and high-risk plaque (HRP). However, CCTA assessment of stenosis and HRP is time-consuming and requires specialized training, limiting its clinical translation.

OBJECTIVES

The aim of this study is to develop and validate a fully automated deep learning system capable of characterizing stenosis severity and HRP on CCTA.

METHODS

A deep learning system was trained to assess stenosis and HRP on CCTA scans from 570 patients in multiple centers. Stenosis severity was categorized as >0%, 1 to 49%, ≥50%, and ≥70%. HRP was defined as low attenuation plaque (≤30 HU), positive remodeling (≥10% diameter), and spotty calcification (<3 mm). The model was then tested on 769 patients (3,012 vessels) for stenosis severity and 45 patients (325 vessels) for HRP.

RESULTS

Our deep learning system achieved 93.5% per-vessel agreement within 1 Coronary Artery Disease-Reporting and Data System (CAD-RADS) category for stenosis. Diagnostic performance for per-vessel stenosis was very good for sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve with: >0% stenosis: 90.6%, 88.8%, 83.4%, 93.9%, 89.7%, respectively; ≥50% stenosis: 87.1%, 92.3%, 60.9%, 98.1%, 89.7%, respectively. Similarly, the per-vessel HRP feature achieved very good diagnostic performance with an area under the curve of 0.80, 0.79, and 0.77 for low attenuation plaque, spotty calcification, and positive remodeling, respectively.

CONCLUSIONS

A fully automated unsupervised deep learning system can rapidly evaluate stenosis severity and characterize HRP with very good diagnostic performance on CCTA.

摘要

背景

冠状动脉计算机断层扫描血管造影(CCTA)已成为评估冠状动脉狭窄和高危斑块(HRP)的一种可靠的非侵入性检查方法。然而,CCTA对狭窄和HRP的评估耗时且需要专门培训,限制了其临床应用。

目的

本研究旨在开发并验证一种能够在CCTA上对狭窄严重程度和HRP进行特征描述的全自动深度学习系统。

方法

训练一个深度学习系统,以评估来自多个中心的570例患者的CCTA扫描图像上的狭窄和HRP。狭窄严重程度分为>0%、1%至49%、≥50%和≥70%。HRP定义为低衰减斑块(≤30 HU)、正向重构(直径≥10%)和点状钙化(<3 mm)。然后,该模型在769例患者(3012支血管)上进行狭窄严重程度测试,在45例患者(325支血管)上进行HRP测试。

结果

我们的深度学习系统在1个冠状动脉疾病报告和数据系统(CAD-RADS)类别内对狭窄的血管一致性达到93.5%。血管狭窄的诊断性能在敏感性、特异性、阳性预测值、阴性预测值和曲线下面积方面都非常好,对于>0%狭窄分别为:90.6%、88.8%、83.4%、93.9%、89.7%;对于≥50%狭窄分别为:87.1%、92.3%、60.9%、98.1%、89.7%。同样,血管HRP特征在低衰减斑块、点状钙化和正向重构的曲线下面积分别为0.80、0.79和0.77,诊断性能也非常好。

结论

一个全自动无监督的深度学习系统可以在CCTA上快速评估狭窄严重程度并对HRP进行特征描述,诊断性能非常好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f21/11450949/e7c0ca1c396e/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验