Le Gallo Manuel, Hrynkevych Oscar, Kersting Benedikt, Karunaratne Geethan, Vasilopoulos Athanasios, Khaddam-Aljameh Riduan, Syed Ghazi Sarwat, Sebastian Abu
IBM Research Europe, 8803 Rüschlikon, Switzerland.
ETH Zürich, 8092 Zürich, Switzerland.
Npj Unconv Comput. 2024;1(1):11. doi: 10.1038/s44335-024-00010-4. Epub 2024 Oct 3.
Analog in-memory computing (AIMC) leverages the inherent physical characteristics of resistive memory devices to execute computational operations, notably matrix-vector multiplications (MVMs). However, executing MVMs using a single-phase reading scheme to reduce latency necessitates the simultaneous application of both positive and negative voltages across resistive memory devices. This degrades the accuracy of the computation due to the dependence of the device conductance on the voltage polarity. Here, we demonstrate the realization of a 4-quadrant MVM in a single modulation by developing analog and digital calibration procedures to mitigate the conductance polarity dependence, fully implemented on a multi-core AIMC chip based on phase-change memory. With this approach, we experimentally demonstrate accurate neural network inference and similarity search tasks using one or multiple cores of the chip, at 4 times higher MVM throughput and energy efficiency than the conventional four-phase reading scheme.
模拟内存计算(AIMC)利用电阻式存储器件的固有物理特性来执行计算操作,特别是矩阵向量乘法(MVM)。然而,使用单相读取方案来减少延迟执行MVM需要在电阻式存储器件上同时施加正电压和负电压。由于器件电导对电压极性的依赖性,这会降低计算的准确性。在此,我们通过开发模拟和数字校准程序来减轻电导极性依赖性,在基于相变存储器的多核AIMC芯片上完全实现了单次调制中的四象限MVM。通过这种方法,我们通过实验证明了使用该芯片的一个或多个内核可以准确执行神经网络推理和相似性搜索任务,其MVM吞吐量和能源效率比传统的四相读取方案高4倍。