Xiao Zhihua, Naik Vinayak Bharat, Lim Jia Hao, Hou Yaoru, Wang Zhongrui, Shao Qiming
The Hong Kong University of Science and Technology, Hong Kong, China.
AI Chip Center for Emerging Smart Systems, Hong Kong, China.
Sci Adv. 2024 Sep 20;10(38):eadp3710. doi: 10.1126/sciadv.adp3710. Epub 2024 Sep 18.
Memristors have emerged as promising devices for enabling efficient multiply-accumulate (MAC) operations in crossbar arrays, crucial for analog in-memory computing (AiMC). However, variations in memristors and associated circuits can affect the accuracy of analog computing. Typically, this is mitigated by on-chip training, which is challenging for memristors with limited endurance. We present a hardware-software codesign using magnetic tunnel junction (MTJ)-based AiMC off-chip calibration that achieves software accuracy without costly on-chip training. Hardware-wise, MTJ devices exhibit ultralow cycle-to-cycle variations, as experimentally evaluated over 1 million mass-produced devices. Software-wise, leveraging this, we propose an off-chip training method to adjust deep neural network parameters, achieving accurate AiMC inference. We validate this approach with MAC operations, showing improved transfer curve linearity and reduced errors. By emulating large-scale neural network models, our codesigned MTJ-based AiMC closely matches software baseline accuracy and outperforms existing off-chip training methods, highlighting MTJ's potential in AI tasks.
忆阻器已成为在交叉阵列中实现高效乘法累加(MAC)运算的有前途的器件,这对于模拟内存计算(AiMC)至关重要。然而,忆阻器及其相关电路的变化会影响模拟计算的准确性。通常,这通过片上训练来缓解,这对于耐久性有限的忆阻器来说具有挑战性。我们提出了一种基于磁隧道结(MTJ)的AiMC片外校准的硬件-软件协同设计方法,该方法无需昂贵的片上训练即可实现软件精度。在硬件方面,通过对超过100万个量产器件进行实验评估,MTJ器件表现出超低的周期间变化。在软件方面,利用这一点,我们提出了一种片外训练方法来调整深度神经网络参数,实现准确的AiMC推理。我们通过MAC运算验证了这种方法,显示出改进的传输曲线线性度和减少的误差。通过模拟大规模神经网络模型,我们基于MTJ的协同设计AiMC与软件基线精度紧密匹配,并且优于现有的片外训练方法,突出了MTJ在人工智能任务中的潜力。