McCreery Kaitlin P, Stubb Aki, Stephens Rebecca, Fursova Nadezda A, Cook Andrew, Kruse Kai, Michelbach Anja, Biggs Leah C, Keikhosravi Adib, Nykänen Sonja, Hydén-Granskog Christel, Zou Jizhong, Lackmann Jan-Wilm, Niessen Carien M, Vuoristo Sanna, Miroshnikova Yekaterina A, Wickström Sara A
Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki Finland.
bioRxiv. 2024 Sep 7:2024.09.07.611779. doi: 10.1101/2024.09.07.611779.
Acquisition of specific cell shapes and morphologies is a central component of cell fate transitions. Although signaling circuits and gene regulatory networks that regulate pluripotent stem cell differentiation have been intensely studied, how these networks are integrated in space and time with morphological transitions and mechanical deformations to control state transitions remains a fundamental open question. Here, we focus on two distinct models of pluripotency, primed pluripotent stem cells and pre-implantation inner cell mass cells of human embryos to discover that cell fate transitions associate with rapid changes in nuclear shape and volume which collectively alter the nuclear mechanophenotype. Mechanistic studies in human induced pluripotent stem cells further reveal that these phenotypical changes and the associated active fluctuations of the nuclear envelope arise from growth factor signaling-controlled changes in chromatin mechanics and cytoskeletal confinement. These collective mechano-osmotic changes trigger global transcriptional repression and a condensation-prone environment that primes chromatin for a cell fate transition by attenuating repression of differentiation genes. However, while this mechano-osmotic chromatin priming has the potential to accelerate fate transitions and differentiation, sustained biochemical signals are required for robust induction of specific lineages. Our findings uncover a critical mechanochemical feedback mechanism that integrates nuclear mechanics, shape and volume with biochemical signaling and chromatin state to control cell fate transition dynamics.
获得特定的细胞形状和形态是细胞命运转变的核心组成部分。尽管调控多能干细胞分化的信号通路和基因调控网络已得到深入研究,但这些网络如何在空间和时间上与形态转变及机械变形整合以控制状态转变仍是一个基本的开放性问题。在此,我们聚焦于两种不同的多能性模型,即人胚胎的始发态多能干细胞和植入前内细胞团细胞,发现细胞命运转变与核形状和体积的快速变化相关联,这些变化共同改变了核机械表型。在人诱导多能干细胞中的机制研究进一步揭示,这些表型变化以及核膜相关的主动波动源于生长因子信号控制的染色质力学和细胞骨架限制的变化。这些共同的机械渗透变化引发全局转录抑制和易于凝聚的环境,通过减弱对分化基因的抑制为细胞命运转变使染色质做好准备。然而,虽然这种机械渗透染色质引发有加速命运转变和分化的潜力,但强大诱导特定谱系仍需要持续的生化信号。我们的研究结果揭示了一种关键的机械化学反馈机制,该机制将核力学、形状和体积与生化信号及染色质状态整合起来以控制细胞命运转变动力学。