Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, Paris, France.
Université de Paris, Paris, France.
Nature. 2024 May;629(8012):646-651. doi: 10.1038/s41586-024-07351-x. Epub 2024 May 1.
The shaping of human embryos begins with compaction, during which cells come into close contact. Assisted reproductive technology studies indicate that human embryos fail compaction primarily because of defective adhesion. On the basis of our current understanding of animal morphogenesis, other morphogenetic engines, such as cell contractility, could be involved in shaping human embryos. However, the molecular, cellular and physical mechanisms driving human embryo morphogenesis remain uncharacterized. Using micropipette aspiration on human embryos donated to research, we have mapped cell surface tensions during compaction. This shows a fourfold increase of tension at the cell-medium interface whereas cell-cell contacts keep a steady tension. Therefore, increased tension at the cell-medium interface drives human embryo compaction, which is qualitatively similar to compaction in mouse embryos. Further comparison between human and mouse shows qualitatively similar but quantitively different mechanical strategies, with human embryos being mechanically least efficient. Inhibition of cell contractility and cell-cell adhesion in human embryos shows that, whereas both cellular processes are required for compaction, only contractility controls the surface tensions responsible for compaction. Cell contractility and cell-cell adhesion exhibit distinct mechanical signatures when faulty. Analysing the mechanical signature of naturally failing embryos, we find evidence that non-compacting or partially compacting embryos containing excluded cells have defective contractility. Together, our study shows that an evolutionarily conserved increase in cell contractility is required to generate the forces driving the first morphogenetic movement shaping the human body.
人类胚胎的形态发生始于致密化过程,在此过程中细胞紧密接触。辅助生殖技术研究表明,人类胚胎致密化失败主要是由于黏附缺陷所致。根据我们目前对动物形态发生的理解,其他形态发生引擎,如细胞收缩力,可能参与人类胚胎的形态发生。然而,驱动人类胚胎形态发生的分子、细胞和物理机制仍未被描述。通过对捐赠用于研究的人类胚胎进行微吸管抽吸,我们绘制了致密化过程中细胞表面张力的图谱。结果显示,细胞与培养基界面的张力增加了四倍,而细胞间接触保持稳定的张力。因此,细胞与培养基界面的张力增加驱动了人类胚胎的致密化,这与小鼠胚胎的致密化在性质上是相似的。进一步比较人类和小鼠胚胎表明,它们具有相似但数量不同的机械策略,人类胚胎的机械效率最低。在人类胚胎中抑制细胞收缩力和细胞间黏附表明,尽管这两个细胞过程都需要致密化,但只有收缩力控制着导致致密化的表面张力。当细胞收缩力和细胞间黏附出现故障时,它们表现出不同的机械特征。分析自然失败的胚胎的机械特征,我们发现证据表明,含有被排斥细胞的未致密化或部分致密化胚胎的收缩力有缺陷。总之,我们的研究表明,细胞收缩力的增加是一种进化上保守的机制,它产生了推动人类身体第一次形态发生运动的力。