Zhicheng He, Yipeng Wang, Xiao Li
School of Computer and Information Technology, Beijing Jiaotong University, Beijing, PR China.
School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, PR China.
Biomed Eng Comput Biol. 2024 Oct 5;15:11795972241288319. doi: 10.1177/11795972241288319. eCollection 2024.
The aim is to detect impacted teeth in panoramic radiology by refining the pretrained MedSAM model.
Impacted teeth are dental issues that can cause complications and are diagnosed via radiographs. We modified SAM model for individual tooth segmentation using 1016 X-ray images. The dataset was split into training, validation, and testing sets, with a ratio of 16:3:1. We enhanced the SAM model to automatically detect impacted teeth by focusing on the tooth's center for more accurate results.
With 200 epochs, batch size equals to 1, and a learning rate of 0.001, random images trained the model. Results on the test set showcased performance up to an accuracy of 86.73%, F1-score of 0.5350, and IoU of 0.3652 on SAM-related models.
This study fine-tunes MedSAM for impacted tooth segmentation in X-ray images, aiding dental diagnoses. Further improvements on model accuracy and selection are essential for enhancing dental practitioners' diagnostic capabilities.
通过优化预训练的MedSAM模型来检测全景放射影像中的阻生牙。
阻生牙是会引发并发症的牙齿问题,需通过X光片进行诊断。我们使用1016张X光图像对SAM模型进行了修改,用于单个牙齿分割。数据集按16:3:1的比例分为训练集、验证集和测试集。我们通过聚焦牙齿中心来增强SAM模型,以自动检测阻生牙,从而获得更准确的结果。
在200个轮次、批量大小为1、学习率为0.001的情况下,使用随机图像对模型进行训练。测试集上的结果显示,在与SAM相关的模型中,准确率高达86.73%,F1分数为0.5350,交并比为0.3652。
本研究对MedSAM进行微调,用于X光图像中的阻生牙分割,辅助牙科诊断。进一步提高模型准确性和进行模型选择对于增强牙科医生的诊断能力至关重要。