Suppr超能文献

龋齿网络:一种用于从口腔全景X射线图像中分割多阶段龋损病变的深度学习方法。

CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image.

作者信息

Zhu Haihua, Cao Zheng, Lian Luya, Ye Guanchen, Gao Honghao, Wu Jian

机构信息

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China.

Real Doctor AI Research Centre, College of Computer Science and Technology, Zhejiang University, Hangzhou, 310006 China.

出版信息

Neural Comput Appl. 2022 Jan 7:1-9. doi: 10.1007/s00521-021-06684-2.

Abstract

Dental caries has been a common health issue throughout the world, which can even lead to dental pulp and root apical inflammation eventually. Timely and effective treatment of dental caries is vital for patients to reduce pain. Traditional caries disease diagnosis methods like naked-eye detection and panoramic radiograph examinations rely on experienced doctors, which may cause misdiagnosis and high time-consuming. To this end, we propose a novel deep learning architecture called CariesNet to delineate different caries degrees from panoramic radiographs. We firstly collect a high-quality panoramic radiograph dataset with 3127 well-delineated caries lesions, including shallow caries, moderate caries, and deep caries. Then we construct CariesNet as a U-shape network with the additional full-scale axial attention module to segment these three caries types from the oral panoramic images. Moreover, we test the segmentation performance between CariesNet and other baseline methods. Experiments show that our method can achieve a mean 93.64% Dice coefficient and 93.61% accuracy in the segmentation of three different levels of caries.

摘要

龋齿一直是全球范围内常见的健康问题,最终甚至可能导致牙髓和根尖炎症。及时有效地治疗龋齿对患者减轻疼痛至关重要。传统的龋齿疾病诊断方法,如肉眼检测和全景X光检查,依赖经验丰富的医生,这可能导致误诊且耗时较长。为此,我们提出了一种名为CariesNet的新型深度学习架构,用于从全景X光片中区分不同的龋齿程度。我们首先收集了一个高质量的全景X光片数据集,其中包含3127个清晰界定的龋损,包括浅龋、中龋和深龋。然后我们将CariesNet构建为一个U形网络,并添加全尺度轴向注意力模块,以从口腔全景图像中分割出这三种龋齿类型。此外,我们测试了CariesNet与其他基线方法之间的分割性能。实验表明,我们的方法在三种不同程度龋齿的分割中,平均Dice系数可达93.64%,准确率可达93.61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3846/8736291/a28c60dcecfe/521_2021_6684_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验