Suppr超能文献

主动学习引导的用于饮用水中铅检测的无细胞生物传感器优化

Active learning-guided optimization of cell-free biosensors for lead testing in drinking water.

作者信息

Wang Brenda M, Chiang Nicole, Ekas Holly M, Brown Dylan M, Dildine Garrett, Lucci Tyler J, Feng Siyuan, Bly Vanessa, Gaillard Jean-François, Lucks Julius B, Karim Ashty S, Shukla Diwakar, Jewett Michael C

机构信息

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

These authors contributed equally.

出版信息

bioRxiv. 2025 Aug 22:2025.08.20.671382. doi: 10.1101/2025.08.20.671382.

Abstract

Point-of-use diagnostics based on allosteric transcription factors (aTFs) are promising tools for environmental monitoring and human health. However, biosensors relying on natural aTFs rarely exhibit the sensitivity and selectivity needed for real-world applications, and traditional directed evolution struggles to optimize multiple biosensor properties at once. To overcome these challenges, we develop a multi-objective, machine learning (ML)-guided cell-free gene expression workflow for engineering aTF-based biosensors. Our approach rapidly generates high-quality sequence-to-function data, which we transform into an augmented paired dataset to train an ML model using directional labels that capture how aTF mutations alter performance. We apply our workflow to engineer the aTF PbrR as a point-of-use diagnostic for lead contamination in water. We tune the sensitivity of PbrR to sense at the U.S. Environmental Protection Agency (EPA) action level for lead and modify the selectivity away from zinc, a common metal found in water supplies. Finally, we show that the engineered PbrR functions in freeze-dried cell-free reactions, enabling a diagnostic capable of detecting lead in drinking water down to ~5.7 ppb. Our ML-driven, multi-objective framework-powered by directional tokens-can generalize to other biosensors and proteins, accelerating the development of synthetic biology tools for biotechnology applications.

摘要

基于变构转录因子(aTFs)的即时诊断技术是用于环境监测和人类健康的很有前景的工具。然而,依赖天然aTFs的生物传感器很少能展现出现实应用所需的灵敏度和选择性,而且传统的定向进化很难一次性优化多种生物传感器特性。为了克服这些挑战,我们开发了一种多目标、机器学习(ML)引导的无细胞基因表达工作流程,用于构建基于aTFs的生物传感器。我们的方法能快速生成高质量的序列到功能的数据,我们将其转化为一个增强配对数据集,使用捕获aTF突变如何改变性能的定向标签来训练一个ML模型。我们应用我们的工作流程来改造aTF PbrR,将其作为水中铅污染的即时诊断工具。我们调整PbrR的灵敏度,使其能在美国环境保护局(EPA)规定的铅行动水平下进行检测,并改变其对锌的选择性,锌是供水中常见的一种金属。最后,我们证明改造后的PbrR能在冻干的无细胞反应中发挥作用,从而实现一种能够检测饮用水中低至约5.7 ppb铅的诊断工具。我们由定向标记驱动的ML驱动多目标框架可以推广到其他生物传感器和蛋白质,加速用于生物技术应用的合成生物学工具的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验