Sun Mingyuan, Wang Shuai, Liang Yanbo, Wang Chao, Zhang Yunhong, Liu Hong, Zhang Yu, Han Lin
Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
Nanomicro Lett. 2024 Oct 7;17(1):34. doi: 10.1007/s40820-024-01534-x.
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
柔性电子器件正在通过让日常活动变得更加便捷来改变我们的生活。这项创新的核心是场效应晶体管(FET),它因其高效的信号处理、纳米级制造、低功耗、快速响应时间和多功能性而受到重视。石墨烯以其卓越的机械性能、高电子迁移率和生物相容性而闻名,是用于FET沟道和传感器的理想材料。石墨烯与FET的结合产生了柔性石墨烯场效应晶体管(FGFET),推动了柔性电子器件的重大进展,并引发了人们对柔性生物医学传感器的浓厚兴趣。在此,我们首先简要概述FGFET的基本结构、工作机制和评估参数,并深入探讨其材料选择和图案化技术。FGFET感知应变和生物分子电荷的能力开启了多种应用可能性。我们特别分析了将FGFET集成到可穿戴和可植入柔性生物医学传感器中的最新策略,重点关注构建高质量柔性生物医学传感器的关键方面。最后,我们讨论了FGFET及其在生物医学传感器中的应用目前面临的挑战和前景。这篇综述将为正在进行的提高FGFET质量并拓宽其在柔性生物医学传感中的应用前景的研究提供有价值的见解和灵感。