Suppr超能文献

衬底表面氧化对用于柔性电子器件的图案化石墨烯生长的影响。

The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics.

作者信息

Zhang Ruiqi, Hou Ning, Wang Huawen, Chen Xu, Shi Haofei, Li Xin

机构信息

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.

Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.

出版信息

Materials (Basel). 2025 Jul 16;18(14):3338. doi: 10.3390/ma18143338.

Abstract

Graphene exhibits exceptional electronic properties, superior mechanical strength, and remarkable flexibility, driving significant advances in flexible electronics. However, achieving high-precision patterned graphene via in situ fabrication for such applications remains challenging, limiting the development of graphene-based flexible devices. In this study, we successfully synthesized patterned graphene with high precision by substrate surface oxidation technology. The effect of substrate surface oxidation on patterned graphene growth was deeply investigated. By regulating the oxidation time, we precisely controlled the oxidation degree of the substrate and characterized the boundary precision between oxidized and unoxidized regions. Finally, we achieved the high-precision in situ fabrication of patterned graphene with a feature size of 0.5 μm on selectively oxidized substrates. Furthermore, we fabricated a flexible fluorescent device based on patterned graphene, demonstrating the pronounced fluorescence quenching effect of graphene (/ ≈ 3).

摘要

石墨烯具有卓越的电子性能、优异的机械强度和出色的柔韧性,推动了柔性电子学的重大进展。然而,通过原位制造实现用于此类应用的高精度图案化石墨烯仍然具有挑战性,限制了基于石墨烯的柔性器件的发展。在本研究中,我们通过衬底表面氧化技术成功地高精度合成了图案化石墨烯。深入研究了衬底表面氧化对图案化石墨烯生长的影响。通过调节氧化时间,我们精确控制了衬底的氧化程度,并表征了氧化区域和未氧化区域之间的边界精度。最后,我们在选择性氧化的衬底上实现了特征尺寸为0.5μm的图案化石墨烯的高精度原位制造。此外,我们基于图案化石墨烯制造了一种柔性荧光器件,证明了石墨烯显著的荧光猝灭效应(/≈3)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0f0/12300308/6860303bc440/materials-18-03338-g001.jpg

相似文献

1
The Effect of Substrate Surface Oxidation on Patterned Graphene Growth for Flexible Electronics.
Materials (Basel). 2025 Jul 16;18(14):3338. doi: 10.3390/ma18143338.
3
Wafer-Level Fabrication of Radiofrequency Devices Featuring 2D Materials Integration.
Nanomaterials (Basel). 2025 Jul 18;15(14):1119. doi: 10.3390/nano15141119.
4
Reading aids for adults with low vision.
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD003303. doi: 10.1002/14651858.CD003303.pub4.
5
Orientation-Controlled van der Waals Epitaxy of MoSe Monolayers on Graphene by MOCVD.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35928-35937. doi: 10.1021/acsami.5c05035. Epub 2025 Jun 4.
6
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
7
A Cu Leaf Enabled Polymer-Free Patterning of Graphene as Flexible Circuits.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43465-43475. doi: 10.1021/acsami.5c10002. Epub 2025 Jul 20.
8
Wafer-Scale High-κ Dielectric for Flexible Electronics Integrated by van der Waals Force.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43208-43216. doi: 10.1021/acsami.5c08483. Epub 2025 Jul 16.
9
Psychological therapies for panic disorder with or without agoraphobia in adults: a network meta-analysis.
Cochrane Database Syst Rev. 2016 Apr 13;4(4):CD011004. doi: 10.1002/14651858.CD011004.pub2.
10
Molecular Gridization of Organic Semiconducting π Backbones.
Acc Chem Res. 2025 Jul 1;58(13):1982-1996. doi: 10.1021/acs.accounts.5c00180. Epub 2025 Jun 13.

本文引用的文献

1
Tuning Electronic and Functional Properties in Defected MoS Films by Surface Patterning of Sulphur Atomic Vacancies.
Small Methods. 2025 Apr;9(4):e2401486. doi: 10.1002/smtd.202401486. Epub 2024 Nov 12.
2
Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing.
Nanomicro Lett. 2024 Oct 7;17(1):34. doi: 10.1007/s40820-024-01534-x.
3
Dual mechanisms in hydrogen reduction of copper oxide: surface reaction and subsurface oxygen atom transfer.
RSC Adv. 2024 Mar 26;14(14):9985-9995. doi: 10.1039/d4ra01240b. eCollection 2024 Mar 20.
4
Flexible Grid Graphene Electrothermal Films for Real-Time Monitoring Applications.
Langmuir. 2024 Apr 2;40(13):6940-6948. doi: 10.1021/acs.langmuir.3c03975. Epub 2024 Mar 20.
5
Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil.
Sci Bull (Beijing). 2017 Aug 15;62(15):1074-1080. doi: 10.1016/j.scib.2017.07.005. Epub 2017 Jul 11.
6
Single-crystal two-dimensional material epitaxy on tailored non-single-crystal substrates.
Nat Commun. 2022 Apr 1;13(1):1773. doi: 10.1038/s41467-022-29451-w.
7
High-brightness all-polymer stretchable LED with charge-trapping dilution.
Nature. 2022 Mar;603(7902):624-630. doi: 10.1038/s41586-022-04400-1. Epub 2022 Mar 23.
8
Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering.
Adv Mater. 2021 Nov;33(45):e2104060. doi: 10.1002/adma.202104060. Epub 2021 Sep 27.
9
Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics.
Adv Mater. 2020 Sep;32(37):e2001903. doi: 10.1002/adma.202001903. Epub 2020 Aug 2.
10
Advanced Carbon for Flexible and Wearable Electronics.
Adv Mater. 2019 Mar;31(9):e1801072. doi: 10.1002/adma.201801072. Epub 2018 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验