Kadry Karim, Olender Max L, Schuh Andreas, Karmakar Abhishek, Petersen Kersten, Schaap Michiel, Marlevi David, UpdePac Adam, Mizukami Takuya, Taylor Charles, Edelman Elazer R, Nezami Farhad R
IEEE Trans Med Imaging. 2025 Feb;44(2):880-890. doi: 10.1109/TMI.2024.3474053. Epub 2025 Feb 4.
Coronary computed tomography angiography (CCTA) provides 3D information on obstructive coronary artery disease, but cannot fully visualize high-resolution features within the vessel wall. Intravascular imaging, in contrast, can spatially resolve atherosclerotic in cross sectional slices, but is limited in capturing 3D relationships between each slice. Co-registering CCTA and intravascular images enables a variety of clinical research applications but is time consuming and user-dependent. This is due to intravascular images suffering from non-rigid distortions arising from irregularities in the imaging catheter path. To address these issues, we present a morphology-based framework for the rigid and non-rigid matching of intravascular images to CCTA images. To do this, we find the optimal virtual catheter path that samples the coronary artery in CCTA image space to recapitulate the coronary artery morphology observed in the intravascular image. We validate our framework on a multi-center cohort of 40 patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our registration approach significantly outperforms other approaches for bifurcation alignment. By providing a differentiable framework for multi-modal vascular co-registration, our framework reduces the manual effort required to conduct large-scale multi-modal clinical studies and enables the development of machine learning-based co-registration approaches.
冠状动脉计算机断层扫描血管造影(CCTA)可提供有关阻塞性冠状动脉疾病的三维信息,但无法完全可视化血管壁内的高分辨率特征。相比之下,血管内成像可以在横截面切片中在空间上分辨动脉粥样硬化,但在捕捉各切片之间的三维关系方面存在局限性。将CCTA与血管内图像进行配准可实现多种临床研究应用,但这既耗时又依赖用户。这是因为血管内图像会受到成像导管路径不规则所产生的非刚性畸变的影响。为了解决这些问题,我们提出了一个基于形态学的框架,用于将血管内图像与CCTA图像进行刚性和非刚性匹配。为此,我们在CCTA图像空间中找到对冠状动脉进行采样的最佳虚拟导管路径,以重现血管内图像中观察到的冠状动脉形态。我们使用分叉标志作为纵向和旋转配准的地面真值,在一个由40名患者组成的多中心队列中验证了我们的框架。我们的配准方法在分叉对齐方面明显优于其他方法。通过为多模态血管配准提供一个可微框架,我们的框架减少了进行大规模多模态临床研究所需的人工操作,并促进了基于机器学习的配准方法发展。