Karmakar Abhishek, Olender Max L, Marlevi David, Shlofmitz Evan, Shlofmitz Richard A, Edelman Elazer R, Nezami Farhad R
Cornell University, Department of Biomedical Engineering, Ithaca, New York, United States.
Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts, United States.
J Med Imaging (Bellingham). 2022 Jul;9(4):044006. doi: 10.1117/1.JMI.9.4.044006. Epub 2022 Aug 25.
Modern medical imaging enables clinicians to effectively diagnose, monitor, and treat diseases. However, clinical decision-making often relies on combined evaluation of either longitudinal or disparate image sets, necessitating coregistration of multiple acquisitions. Promising coregistration techniques have been proposed; however, available methods predominantly rely on time-consuming manual alignments or nontrivial feature extraction with limited clinical applicability. Addressing these issues, we present a fully automated, robust, nonrigid registration method, allowing for coregistering of multimodal tomographic vascular image datasets using luminal annotation as the sole alignment feature. Registration is carried out by the use of the registration metrics defined exclusively for lumens shapes. The framework is primarily broken down into two sequential parts: longitudinal and rotational registration. Both techniques are inherently nonrigid in nature to compensate for motion and acquisition artifacts in tomographic images. Performance was evaluated across multimodal intravascular datasets, as well as in longitudinal cases assessing pre-/postinterventional coronary images. Low registration error in both datasets highlights method utility, with longitudinal registration errors-evaluated throughout the paired tomographic sequences-of ( longitudinal image frames) and ( frame) for multimodal and interventional datasets, respectively. Angular registration for the interventional dataset rendered errors of , and for the multimodal set. Satisfactory results across datasets, along with additional attributes such as the ability to avoid longitudinal over-fitting and correct nonlinear catheter rotation during nonrigid rotational registration, highlight the potential wide-ranging applicability of our presented coregistration method.
现代医学成像使临床医生能够有效地诊断、监测和治疗疾病。然而,临床决策通常依赖于对纵向或不同图像集的综合评估,这就需要对多次采集的图像进行配准。已经提出了一些有前景的配准技术;然而,现有的方法主要依赖于耗时的手动对齐或具有有限临床适用性的复杂特征提取。为了解决这些问题,我们提出了一种全自动、稳健的非刚性配准方法,该方法允许使用管腔注释作为唯一的对齐特征对多模态断层血管图像数据集进行配准。配准是通过使用专门为管腔形状定义的配准指标来进行的。该框架主要分为两个连续的部分:纵向配准和旋转配准。这两种技术本质上都是非刚性的,以补偿断层图像中的运动和采集伪影。我们在多模态血管内数据集以及评估介入前/后冠状动脉图像的纵向病例中评估了该方法的性能。两个数据集中的低配准误差突出了该方法的实用性,对于多模态和介入数据集,在整个配对断层序列中评估的纵向配准误差分别为(纵向图像帧)和(帧)。介入数据集的角度配准误差为,多模态数据集的角度配准误差为。各数据集中的满意结果,以及避免纵向过拟合和在非刚性旋转配准过程中校正非线性导管旋转等其他特性,突出了我们提出的配准方法具有广泛的潜在适用性。