Department of Computer Science, Western University, London, Ontario, Canada.
Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
PLoS Comput Biol. 2024 Oct 7;20(10):e1012490. doi: 10.1371/journal.pcbi.1012490. eCollection 2024 Oct.
This study addresses the heterogeneity of Breast Cancer (BC) by employing a Conditional Probabilistic Diffusion Model (CPDM) to synthesize Magnetic Resonance Images (MRIs) based on multi-omic data, including gene expression, copy number variation, and DNA methylation. The lack of paired medical images and genomics data in previous studies presented a challenge, which the CPDM aims to overcome. The well-trained CPDM successfully generated synthetic MRIs for 726 TCGA-BRCA patients, who lacked actual MRIs, using their multi-omic profiles. Evaluation metrics such as Frechet's Inception Distance (FID), Mean Square Error (MSE), and Structural Similarity Index Measure (SSIM) demonstrated the CPDM's effectiveness, with an FID of 2.02, an MSE of 0.02, and an SSIM of 0.59 based on the 15-fold cross-validation. The synthetic MRIs were used to predict clinical attributes, achieving an Area Under the Receiver-Operating-Characteristic curve (AUROC) of 0.82 and an Area Under the Precision-Recall Curve (AUPRC) of 0.84 for predicting ER+/HER2+ subtypes. Additionally, the MRIs served to accurately predicted BC patient survival with a Concordance-index (C-index) score of 0.88, outperforming other baseline models. This research demonstrates the potential of CPDMs in generating MRIs based on BC patients' genomic profiles, offering valuable insights for radiogenomic research and advancements in precision medicine. The study provides a novel approach to understanding BC heterogeneity for early detection and personalized treatment.
本研究通过使用条件概率扩散模型(CPDM)根据多组学数据(包括基因表达、拷贝数变异和 DNA 甲基化)合成磁共振图像(MRI),解决乳腺癌(BC)的异质性问题。先前的研究缺乏配对的医学图像和基因组学数据,CPDM 旨在克服这一挑战。经过充分训练的 CPDM 成功地为 726 名 TCGA-BRCA 患者生成了合成 MRI,这些患者缺乏实际的 MRI,但有他们的多组学图谱。Frechet 初始距离(FID)、均方误差(MSE)和结构相似性指数度量(SSIM)等评估指标表明 CPDM 的有效性,15 折交叉验证的 FID 为 2.02,MSE 为 0.02,SSIM 为 0.59。使用这些合成 MRI 预测临床属性,对 ER+/HER2+亚型的预测达到了接收器操作特征曲线下面积(AUROC)为 0.82 和精度-召回曲线下面积(AUPRC)为 0.84。此外,这些 MRI 还能够准确预测 BC 患者的生存情况,一致性指数(C-index)评分为 0.88,优于其他基线模型。这项研究表明 CPDM 有潜力根据 BC 患者的基因组图谱生成 MRI,为放射基因组学研究和精准医学的发展提供了有价值的见解。该研究提供了一种新的方法来理解 BC 的异质性,以便进行早期检测和个性化治疗。