Suppr超能文献

用于HER2阳性/ER阳性乳腺癌分层的预后15基因特征的开发与验证

Development and validation of a prognostic 15-gene signature for stratifying HER2+/ER+ breast cancer.

作者信息

Liu Qian, Huang Shujun, Desautels Danielle, McManus Kirk J, Murphy Leigh, Hu Pingzhao

机构信息

Department of Biochemistry, Western University, London, Ontario, Canada.

Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.

出版信息

Comput Struct Biotechnol J. 2023 May 4;21:2940-2949. doi: 10.1016/j.csbj.2023.05.002. eCollection 2023.

Abstract

BACKGROUND

Human epidermal growth receptor 2-positive (HER2+) breast cancer (BC) is a heterogeneous subgroup. Estrogen receptor (ER) status is emerging as a predictive marker within HER2+ BCs, with the HER2+/ER+ cases usually having better survival in the first 5 years after diagnosis but have higher recurrence risk after 5 years compared to HER2+/ER-. This is possibly because sustained ER signaling in HER2+ BCs helps escape the HER2 blockade. Currently HER2+/ER+ BC is understudied and lacks biomarkers. Thus, a better understanding of the underlying molecular diversity is important to find new therapy targets for HER2+/ER+ BCs.

METHODS

In this study, we performed unsupervised consensus clustering together with genome-wide Cox regression analyses on the gene expression data of 123 HER2+/ER+ BC from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) cohort to identify distinct HER2+/ER+ subgroups. A supervised eXtreme Gradient Boosting (XGBoost) classifier was then built in TCGA using the identified subgroups and validated in another two independent datasets (Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO) (accession number GSE149283)). Computational characterization analyses were also performed on the predicted subgroups in different HER2+/ER+ BC cohorts.

RESULTS

We identified two distinct HER2+/ER+ subgroups with different survival outcomes using the expression profiles of 549 survival-associated genes from the Cox regression analyses. Genome-wide gene expression differential analyses found 197 differentially expressed genes between the two identified subgroups, with 15 genes overlapping the 549 survival-associated genes.XGBoost classifier, using the expression values of the 15 genes, achieved a strong cross-validated performance (Area under the curve (AUC) = 0.85, Sensitivity = 0.76, specificity = 0.77) in predicting the subgroup labels. Further investigation partially confirmed the differences in survival, drug response, tumor-infiltrating lymphocytes, published gene signatures, and CRISPR-Cas9 knockout screened gene dependency scores between the two identified subgroups.

CONCLUSION

This is the first study to stratify HER2+/ER+ tumors. Overall, the initial results from different cohorts showed there exist two distinct subgroups in HER2+/ER+ tumors, which can be distinguished by a 15-gene signature. Our findings could potentially guide the development of future precision therapies targeted on HER2+/ER+ BC.

摘要

背景

人表皮生长因子受体2阳性(HER2+)乳腺癌(BC)是一个异质性亚组。雌激素受体(ER)状态正在成为HER2+ BC中的一种预测标志物,HER2+/ER+病例在诊断后的前5年通常具有较好的生存率,但与HER2+/ER-病例相比,5年后复发风险更高。这可能是因为HER2+ BC中持续的ER信号传导有助于逃避HER2阻断。目前,HER2+/ER+ BC的研究较少且缺乏生物标志物。因此,更好地了解其潜在的分子多样性对于找到HER2+/ER+ BC的新治疗靶点很重要。

方法

在本研究中,我们对来自癌症基因组图谱乳腺浸润性癌(TCGA-BRCA)队列的123例HER2+/ER+ BC的基因表达数据进行了无监督一致性聚类和全基因组Cox回归分析,以识别不同的HER2+/ER+亚组。然后在TCGA中使用识别出的亚组构建了一个有监督的极端梯度提升(XGBoost)分类器,并在另外两个独立数据集(国际乳腺癌分子分类联盟(METABRIC)和基因表达综合数据库(GEO)(登录号GSE149283))中进行了验证。还对不同HER2+/ER+ BC队列中预测的亚组进行了计算表征分析。

结果

我们使用Cox回归分析中549个生存相关基因的表达谱,识别出两个具有不同生存结果的不同HER2+/ER+亚组。全基因组基因表达差异分析发现,在两个识别出的亚组之间有197个差异表达基因,其中15个基因与549个生存相关基因重叠。使用这15个基因的表达值构建的XGBoost分类器在预测亚组标签方面具有很强的交叉验证性能(曲线下面积(AUC)=0.85,敏感性=0.76,特异性=0.77)。进一步研究部分证实了两个识别出的亚组在生存、药物反应、肿瘤浸润淋巴细胞、已发表的基因特征以及CRISPR-Cas9敲除筛选的基因依赖性评分方面的差异。

结论

这是第一项对HER2+/ER+肿瘤进行分层的研究。总体而言,来自不同队列的初步结果表明,HER2+/ER+肿瘤中存在两个不同的亚组,可通过一个15基因特征进行区分。我们的发现可能会指导未来针对HER2+/ER+ BC的精准治疗的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/655a/10196919/8eef98b04c14/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验