Suppr超能文献

基于深度学习方法从脑部计算机断层扫描(CT)图像合成磁共振图像(MRI)用于磁共振(MR)引导放疗

Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy.

作者信息

Li Wen, Li Yafen, Qin Wenjian, Liang Xiaokun, Xu Jianyang, Xiong Jing, Xie Yaoqin

机构信息

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Quant Imaging Med Surg. 2020 Jun;10(6):1223-1236. doi: 10.21037/qims-19-885.

Abstract

BACKGROUND

Precise patient setup is critical in radiation therapy. Medical imaging plays an essential role in patient setup. As compared to computed tomography (CT) images, magnetic resonance image (MRI) has high contrast for soft tissues, which becomes a promising imaging modality during treatment. In this paper, we proposed a method to synthesize brain MRI images from corresponding planning CT (pCT) images. The synthetic MRI (sMRI) images can be used to align with positioning MRI (pMRI) equipped by an MRI-guided accelerator to account for the disadvantages of multi-modality image registration.

METHODS

Several deep learning network models were applied to implement this brain MRI synthesis task, including CycleGAN, Pix2Pix model, and U-Net. We evaluated these methods using several metrics, including mean absolute error (MAE), mean squared error (MSE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR).

RESULTS

In our experiments, U-Net with L1+L2 loss achieved the best results with the lowest overall average MAE of 74.19 and MSE of 1.035*10, respectively, and produced the highest SSIM of 0.9440 and PSNR of 32.44.

CONCLUSIONS

Quantitative comparisons suggest that the performance of U-Net, a supervised deep learning method, is better than the performance of CycleGAN, a typical unsupervised method, in our brain MRI synthesis procedure. The proposed method can convert pCT/pMRI multi-modality registration into mono-modality registration, which can be used to reduce registration error and achieve a more accurate patient setup.

摘要

背景

精确的患者摆位在放射治疗中至关重要。医学成像在患者摆位中起着关键作用。与计算机断层扫描(CT)图像相比,磁共振成像(MRI)对软组织具有高对比度,这使其成为治疗期间一种有前景的成像方式。在本文中,我们提出了一种从相应的计划CT(pCT)图像合成脑部MRI图像的方法。合成的MRI(sMRI)图像可用于与MRI引导加速器配备的定位MRI(pMRI)对齐,以弥补多模态图像配准的缺点。

方法

应用了几种深度学习网络模型来实现此脑部MRI合成任务,包括循环生成对抗网络(CycleGAN)、Pix2Pix模型和U-Net。我们使用几种指标对这些方法进行了评估,包括平均绝对误差(MAE)、均方误差(MSE)、结构相似性指数(SSIM)和峰值信噪比(PSNR)。

结果

在我们的实验中,采用L1 + L2损失的U-Net取得了最佳结果,总体平均MAE最低为74.19,MSE分别为1.035×10,产生的最高SSIM为0.9440,PSNR为32.44。

结论

定量比较表明,在我们的脑部MRI合成过程中,作为一种有监督的深度学习方法,U-Net的性能优于典型的无监督方法循环生成对抗网络(CycleGAN)。所提出的方法可以将pCT/pMRI多模态配准转换为单模态配准,可用于减少配准误差并实现更精确的患者摆位。

相似文献

引用本文的文献

本文引用的文献

3
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.基于上下文感知生成对抗网络的医学图像合成
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
8
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验