Suppr超能文献

首发精神病后功能结局的多变量预测:EUFEST和PSYSCAN研究中的交叉验证方法

Multivariable prediction of functional outcome after first-episode psychosis: a crossover validation approach in EUFEST and PSYSCAN.

作者信息

Slot Margot I E, Urquijo Castro Maria F, Winter-van Rossum Inge, van Hell Hendrika H, Dwyer Dominic, Dazzan Paola, Maat Arija, De Haan Lieuwe, Crespo-Facorro Benedicto, Glenthøj Birte Y, Lawrie Stephen M, McDonald Colm, Gruber Oliver, van Amelsvoort Thérèse, Arango Celso, Kircher Tilo, Nelson Barnaby, Galderisi Silvana, Weiser Mark, Sachs Gabriele, Kirschner Matthias, Fleischhacker W Wolfgang, McGuire Philip, Koutsouleris Nikolaos, Kahn René S

机构信息

Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.

Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.

出版信息

Schizophrenia (Heidelb). 2024 Oct 7;10(1):89. doi: 10.1038/s41537-024-00505-w.

Abstract

Several multivariate prognostic models have been published to predict outcomes in patients with first episode psychosis (FEP), but it remains unclear whether those predictions generalize to independent populations. Using a subset of demographic and clinical baseline predictors, we aimed to develop and externally validate different models predicting functional outcome after a FEP in the context of a schizophrenia-spectrum disorder (FES), based on a previously published cross-validation and machine learning pipeline. A crossover validation approach was adopted in two large, international cohorts (EUFEST, n = 338, and the PSYSCAN FES cohort, n = 226). Scores on the Global Assessment of Functioning scale (GAF) at 12 month follow-up were dichotomized to differentiate between poor (GAF current < 65) and good outcome (GAF current ≥ 65). Pooled non-linear support vector machine (SVM) classifiers trained on the separate cohorts identified patients with a poor outcome with cross-validated balanced accuracies (BAC) of 65-66%, but BAC dropped substantially when the models were applied to patients from a different FES cohort (BAC = 50-56%). A leave-site-out analysis on the merged sample yielded better performance (BAC = 72%), highlighting the effect of combining data from different study designs to overcome calibration issues and improve model transportability. In conclusion, our results indicate that validation of prediction models in an independent sample is essential in assessing the true value of the model. Future external validation studies, as well as attempts to harmonize data collection across studies, are recommended.

摘要

已经发表了几种多变量预后模型来预测首发精神病(FEP)患者的预后,但这些预测是否能推广到独立人群仍不清楚。利用一部分人口统计学和临床基线预测因素,我们旨在基于之前发表的交叉验证和机器学习流程,开发并外部验证不同的模型,以预测精神分裂症谱系障碍(FES)背景下FEP后的功能结局。在两个大型国际队列(EUFEST,n = 338,以及PSYSCAN FES队列,n = 226)中采用了交叉验证方法。将12个月随访时的全球功能评估量表(GAF)得分进行二分法划分,以区分预后不良(当前GAF < 65)和预后良好(当前GAF≥65)。在单独队列上训练的合并非线性支持向量机(SVM)分类器识别出预后不良的患者,交叉验证的平衡准确率(BAC)为65 - 66%,但当将模型应用于来自不同FES队列的患者时,BAC大幅下降(BAC = 50 - 56%)。对合并样本进行的留位点分析产生了更好的性能(BAC = 72%),突出了合并来自不同研究设计的数据以克服校准问题并提高模型可移植性的效果。总之,我们的结果表明,在独立样本中验证预测模型对于评估模型的真实价值至关重要。建议未来进行外部验证研究,以及尝试统一各研究的数据收集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b12a/11458815/ef0447899829/41537_2024_505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验