Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, 81 Irwon-Ro, Gangnam-Gu, Seoul, Korea.
Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Sci Rep. 2023 Jul 17;13(1):11501. doi: 10.1038/s41598-023-37742-5.
Cancer pain is a challenging clinical problem that is encountered in the management of cancer pain. We aimed to investigate the clinical relevance of deep learning models that predict the onset of cancer pain exacerbation in hospitalized patients. We defined cancer pain exacerbation (CPE) as the pain with a numerical rating scale (NRS) score of ≥ 4. We investigated the performance of the deep learning models using the Matthews correlation coefficient (MCC) with different input lengths and time binning. All the pain records were obtained from the electronic medical records of the hematology-oncology wards in a Samsung Medical Center between July 2016 and February 2020. The model was externally validated using the holdout method with 20% of the datasets. The most common type of cancer was lung cancer (n = 745, 21.7%), and the median CPE per day was 1.01. The NRS pain records showed circadian patterns that correlated with NRS pain patterns of the previous days. The correlation of the NRS scores showed a positive association with the closeness of the NRS pattern of the day with forecast date and size of time binning. The long short-term memory-based model exhibited a good performance by demonstrating 9 times the best performance and 8 times the second-best performance among 21 different settings. The best performance was achieved with 120 h input and 12 h bin lengths (MCC: 0.4927). Our study demonstrated the possibility of predicting CPE using deep learning models, thereby suggesting that preemptive cancer pain management using deep learning could potentially improve patients' daily life.
癌症疼痛是癌症疼痛管理中遇到的具有挑战性的临床问题。我们旨在研究深度学习模型预测住院患者癌症疼痛加重的临床相关性。我们将癌症疼痛加重(CPE)定义为疼痛数字评分量表(NRS)评分≥4。我们使用不同输入长度和时间分箱的马修斯相关系数(MCC)来研究深度学习模型的性能。所有疼痛记录均来自三星医疗中心血液肿瘤科病房的电子病历,时间范围为 2016 年 7 月至 2020 年 2 月。使用 20%数据集的留一法进行外部验证。最常见的癌症类型是肺癌(n=745,21.7%),每天的 CPE 中位数为 1.01。NRS 疼痛记录显示出与前几天 NRS 疼痛模式相关的昼夜节律模式。NRS 评分的相关性与当天 NRS 模式与预测日期的接近程度以及时间分箱的大小呈正相关。基于长短期记忆的模型表现出良好的性能,在 21 种不同设置中,其最佳性能出现了 9 次,第二佳性能出现了 8 次。最佳性能在输入 120 小时和 12 小时分箱长度时实现(MCC:0.4927)。我们的研究表明,使用深度学习模型预测 CPE 是可行的,这表明使用深度学习进行预防性癌症疼痛管理可能会潜在地改善患者的日常生活。