Department of Critical-care Medicine, Jining NO.1 People's Hospital, Jining, 272000, Shandong Province, China.
Department of Critical-care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
BMC Gastroenterol. 2024 Oct 7;24(1):353. doi: 10.1186/s12876-024-03444-z.
This study examined the potential association between nucleated red blood cell (NRBC) levels and mortality in critically ill patients with acute pancreatitis (AP) in the intensive care unit, due to limited existing research on this correlation.
This retrospective cohort study utilized data from the MIMIC-IV v2.0 and MIMIC-III v1.4 databases to investigate the potential relationship between NRBC levels and patient outcomes. The study employed restricted cubic splines (RCS) regression analysis to explore non-linear associations. The impact of NRBC on prognosis was assessed using a generalized linear model (GLM) with a logit link, adjusted for potential confounders. Furthermore, four machine learning models, including Gradient Boosting Classifier (GBC), Random Forest, Gaussian Naive Bayes, and Decision Tree Classifier model, were constructed using NRBC data to generate risk scores and evaluate the potential of NRBC in predicting patient prognosis.
A total of 354 patients were enrolled in the study, with 162 (45.8%) individuals aged 60 years or older and 204 (57.6%) males. RCS regression analysis demonstrated a non-linear relationship between NRBC levels and 90-day mortality. Receiver Operating Characteristic (ROC) analysis identified a 1.7% NRBC cutoff to distinguish survivor from non-survivor patients for 90-day mortality, yielding an Area Under the Curve (AUC) of 0.599, with a sensitivity of 0.475 and specificity of 0.711. Elevated NRBC levels were associated with increased risks of 90-day mortality in both unadjusted and adjusted models (all Odds Ratios > 1, P < 0.05). Assessment of various machine learning models with nine variables, including NRBC, Sex, Age, Simplified Acute Physiology Score II, Acute Physiology Score III, Congestive Heart Failure, Vasopressin, Norepinephrine, and Mean Arterial Pressure, indicated that the GBC model displayed the highest predictive accuracy for 90-day mortality, with an AUC of 0.982 (95% CI 0.970-0.994). Post hoc power analysis showed a statistical power of 0.880 in the study.
Elevated levels of NRBC are linked to an increased mortality risk in critically ill patients with AP, suggesting its potential for predicting mortality.
本研究旨在探讨在重症监护病房(ICU)中患有急性胰腺炎(AP)的危重症患者中性粒细胞(NRBC)水平与死亡率之间的潜在关联,因为目前关于这种相关性的研究有限。
本回顾性队列研究利用 MIMIC-IV v2.0 和 MIMIC-III v1.4 数据库中的数据,探讨了 NRBC 水平与患者预后之间的潜在关系。研究采用限制立方样条(RCS)回归分析来探索非线性关联。使用广义线性模型(GLM)与对数链接评估 NRBC 对预后的影响,该模型调整了潜在混杂因素。此外,使用 NRBC 数据构建了四个机器学习模型,包括梯度提升分类器(GBC)、随机森林、高斯朴素贝叶斯和决策树分类器模型,以生成风险评分并评估 NRBC 预测患者预后的潜力。
共纳入 354 例患者,其中 162 例(45.8%)患者年龄在 60 岁及以上,204 例(57.6%)为男性。RCS 回归分析显示 NRBC 水平与 90 天死亡率之间存在非线性关系。受试者工作特征(ROC)分析确定 1.7%的 NRBC 截断值可区分 90 天死亡率的幸存者和非幸存者,曲线下面积(AUC)为 0.599,灵敏度为 0.475,特异性为 0.711。在未调整和调整模型中,NRBC 水平升高均与 90 天死亡率的风险增加相关(所有优势比均>1,P<0.05)。使用包括 NRBC、性别、年龄、简化急性生理学评分 II、急性生理学评分 III、充血性心力衰竭、血管加压素、去甲肾上腺素和平均动脉压在内的 9 个变量评估各种机器学习模型,结果表明 GBC 模型对 90 天死亡率的预测准确性最高,AUC 为 0.982(95%CI 0.970-0.994)。事后功效分析显示研究具有 0.880 的统计功效。
NRBC 水平升高与 AP 危重症患者的死亡率增加相关,提示其具有预测死亡率的潜力。