Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye.
Department of Food Technology, Manavgat Vocational School, Akdeniz University, Antalya, 07600, Türkiye.
BMC Microbiol. 2024 Oct 7;24(1):391. doi: 10.1186/s12866-024-03551-7.
This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures.
Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaA, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaA, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene.
The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.
本研究对先前从小牲畜初乳中分离出的 11 株肠球菌和 2 株屎肠球菌进行了安全性评估。肠球菌不具备“一般认为安全”(GRAS)地位。因此,在将其用作起始或辅助培养物之前,仔细研究肠球菌的抗生素耐药性、毒力特征和生物胺产生能力至关重要。
肠球菌菌株对具有医学意义的抗生素表现出敏感性。仅屎肠球菌 HC121.4 存在多重耐药(MDR),其多重抗生素耐药(MAR)指数为 0.22。在菌株中最常发现的抗生素耐药基因是 tetL 和 aph(3')-IIIa。然而,肠球菌菌株 HC56.3、HC73.1、HC147.1 和屎肠球菌菌株 HC121.4 被检测到不含有本研究中检查的任何抗生素耐药基因。只有肠球菌 HC166.3 显示出溶血活性,而没有任何菌株具有明胶酶活性。这些菌株被鉴定为具有低比率的毒力因子基因。在肠球菌 HC26.1、HC56.3、HC73.1、HC165.3、HC166.8 和屎肠球菌 HC121.4 中均未检测到任何毒力因子基因。肠球菌 HC73.2 株显示出最高数量的毒力因子基因,即 gelE、efaA、cpd 和 ccf。同样,肠球菌 HC112.1 株显示出 efaA、ccf 和 acm 基因的显著存在。在任何菌株中都没有看到组氨酸、鸟氨酸或赖氨酸的脱羧作用。然而,屎肠球菌 HC121.4 和 HC161.1 菌株可以脱羧酪氨酸,但肠球菌 HC26.1、HC56.3、HC73.1、HC73.2、HC112.1、HC147.1、HC155.2、HC165.3、HC166.3、HC166.5 和 HC166.8 菌株仅显示出有限的酪氨酸脱羧能力。没有菌株具有 hdc、odc 或 ldc 基因,但所有菌株都具有 tdc 基因。
肠球菌 HC56.3 和 HC73.1 菌株适合用于食品生产。在食品生产活动中使用其余 11 株作为活菌可能对消费者健康构成潜在风险。