Suppr超能文献

使用多重组检测结果估计两种或多种疾病的患病率。

Estimating the prevalence of two or more diseases using outcomes from multiplex group testing.

机构信息

Department of Mathematics and Statistics, Radford University, Radford, Virginia, USA.

Department of Statistics, University of South Carolina, Columbia, South Carolina, USA.

出版信息

Biom J. 2023 Oct;65(7):e2200270. doi: 10.1002/bimj.202200270. Epub 2023 May 16.

Abstract

When screening a population for infectious diseases, pooling individual specimens (e.g., blood, swabs, urine, etc.) can provide enormous cost savings when compared to testing specimens individually. In the biostatistics literature, testing pools of specimens is commonly known as group testing or pooled testing. Although estimating a population-level prevalence with group testing data has received a large amount of attention, most of this work has focused on applications involving a single disease, such as human immunodeficiency virus. Modern methods of screening now involve testing pools and individuals for multiple diseases simultaneously through the use of multiplex assays. Hou et al. (2017, Biometrics, 73, 656-665) and Hou et al. (2020, Biostatistics, 21, 417-431) recently proposed group testing protocols for multiplex assays and derived relevant case identification characteristics, including the expected number of tests and those which quantify classification accuracy. In this article, we describe Bayesian methods to estimate population-level disease probabilities from implementing these protocols or any other multiplex group testing protocol which might be carried out in practice. Our estimation methods can be used with multiplex assays for two or more diseases while incorporating the possibility of test misclassification for each disease. We use chlamydia and gonorrhea testing data collected at the State Hygienic Laboratory at the University of Iowa to illustrate our work. We also provide an online R resource practitioners can use to implement the methods in this article.

摘要

在对传染病进行人群筛查时,与逐个检测样本(例如血液、拭子、尿液等)相比,将个体样本合并为样本池可以节省大量成本。在生物统计学文献中,对样本池进行检测通常被称为分组检测或混合检测。尽管使用分组检测数据来估计人群水平的流行率已经受到了广泛关注,但这些工作大多集中在涉及单一疾病的应用上,例如人类免疫缺陷病毒。现代筛查方法现在通过使用多重检测同时对多个疾病进行样本池和个体检测。Hou 等人(2017 年,《生物统计学》,73,656-665)和 Hou 等人(2020 年,《生物统计学》,21,417-431)最近提出了用于多重检测的分组检测方案,并推导出了相关的病例识别特征,包括预期的检测次数和量化分类准确性的那些。在本文中,我们描述了从实施这些方案或任何其他可能在实践中进行的多重分组检测方案中估计人群疾病概率的贝叶斯方法。我们的估计方法可以用于两种或更多种疾病的多重检测,同时考虑每种疾病的检测错误分类的可能性。我们使用爱荷华州立卫生实验室收集的衣原体和淋病检测数据来说明我们的工作。我们还提供了一个在线 R 资源,从业者可以使用该资源来实现本文中的方法。

相似文献

2
Array testing for multiplex assays.多重分析的阵列检测。
Biostatistics. 2020 Jul 1;21(3):417-431. doi: 10.1093/biostatistics/kxy058.
3
Informative group testing for multiplex assays.多重检测的信息性分组检测
Biometrics. 2019 Mar;75(1):278-288. doi: 10.1111/biom.12988. Epub 2019 Mar 28.
5
Bayesian regression for group testing data.用于分组测试数据的贝叶斯回归
Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.
6
Generalized additive regression for group testing data.广义加性回归在组检测数据中的应用。
Biostatistics. 2021 Oct 13;22(4):873-889. doi: 10.1093/biostatistics/kxaa003.

本文引用的文献

1
Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases.优化用于估计多种疾病患病率的混合检测
J Agric Biol Environ Stat. 2022;27(4):713-727. doi: 10.1007/s13253-022-00511-4. Epub 2022 Aug 12.
6
Array testing for multiplex assays.多重分析的阵列检测。
Biostatistics. 2020 Jul 1;21(3):417-431. doi: 10.1093/biostatistics/kxy058.
8
Group testing regression models with dilution submodels.带有稀释子模型的分组测试回归模型。
Stat Med. 2017 Dec 30;36(30):4860-4872. doi: 10.1002/sim.7455. Epub 2017 Aug 30.
9
Bayesian regression for group testing data.用于分组测试数据的贝叶斯回归
Biometrics. 2017 Dec;73(4):1443-1452. doi: 10.1111/biom.12704. Epub 2017 Apr 12.
10
Hierarchical group testing for multiple infections.多重感染的分层分组检测
Biometrics. 2017 Jun;73(2):656-665. doi: 10.1111/biom.12589. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验