Friedrich-Alexander-Universität Erlangen-Nürnberg, Power-To-X Technologies, 90762 Fürth, Germany.
Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany.
Analyst. 2024 Nov 4;149(22):5411-5422. doi: 10.1039/d4an01136h.
The increasing demand in healthcare for accessible and cost-effective analytical tools is driving the development of reliable platforms to the customization of therapy according to individual patient drug serum levels, of anti-psychotics in schizophrenia. A modifier-free microfluidic paper-based electroanalytical device (μPED) holds promise as a portable, sensitive, and affordable solution. While many studies focus on the working electrode catalysts, improvements by engineering aspects of the electrode arrangement are less reported. In our study, we demonstrate the enhanced capabilities of the 3D electrode layout of μPED compared to 2D μPED arrangements. We especially show that screen printing can be employed to prepare 3D μPEDs. We conducted a comparison of different 2D and 3D electrode arrangements utilizing cyclic voltammetry in [Fe(CN)], along with square-wave voltammetry for clozapine (CLZ) sensing. Our findings reveal that the utilization of the 3D μPED leads to an increase in both the electrochemically active surface area and the electron transfer rate. Consequently, this enhancement contributes to improve sensitivity in the CLZ sensing. The 3D μPED clearly outperforms the 2D μPED arrangement in terms of signal strength. With the 3D μPED under the optimized conditions, a linear dose-response for a concentration range from 7.0 to 100 μM was achieved. The limit of detection and sensitivity was determined to be 1.47 μM and 1.69 μA μM cm, respectively. This evaluation is conducted in the context of detection and determination of CLZ in a human blood serum sample. These findings underscore the potential of the 3D μPED for future applications in pharmacokinetic analyses and clinical tests to personalize the management of schizophrenia.
医疗领域对易于使用且经济有效的分析工具的需求不断增加,这推动了可靠平台的发展,以便根据个体患者的药物血清水平定制治疗方案,特别是针对精神分裂症中的抗精神病药物。无修饰的微流控纸基电化学生物传感器(μPED)作为一种便携式、灵敏且经济实惠的解决方案具有很大的潜力。虽然许多研究都集中在工作电极催化剂上,但通过改进电极排列的工程方面来提高性能的研究则较少报道。在我们的研究中,我们展示了与 2D μPED 排列相比,3D 电极结构的 μPED 的增强功能。我们特别展示了可以使用丝网印刷来制备 3D μPED。我们通过在 [Fe(CN)]中进行循环伏安法以及使用方波伏安法进行氯氮平(CLZ)传感,比较了不同的 2D 和 3D 电极排列。我们的研究结果表明,利用 3D μPED 可以增加电化学活性表面积和电子转移速率。因此,这种增强有助于提高 CLZ 传感的灵敏度。在信号强度方面,3D μPED 明显优于 2D μPED 排列。在 3D μPED 的最佳条件下,可实现 7.0 至 100 μM 浓度范围内的线性剂量响应。检测限和灵敏度分别确定为 1.47 μM 和 1.69 μA μM cm。该评估是在检测和确定人血清样本中 CLZ 的背景下进行的。这些发现突显了 3D μPED 在未来用于药代动力学分析和临床测试以个性化管理精神分裂症的应用潜力。