Suppr超能文献

基于波束形成的神经网络超声成像技术

Beamforming-integrated neural networks for ultrasound imaging.

机构信息

Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Canada.

Schlegel-UW Research Institute for Aging, University of Waterloo, Waterloo, Canada.

出版信息

Ultrasonics. 2025 Jan;145:107474. doi: 10.1016/j.ultras.2024.107474. Epub 2024 Oct 3.

Abstract

Sparse matrix beamforming (SMB) is a computationally efficient reformulation of delay-and-sum (DAS) beamforming as a single sparse matrix multiplication. This reformulation can potentially dovetail with machine learning platforms like TensorFlow and PyTorch that already support sparse matrix operations. In this work, using SMB principles, we present the development of beamforming-integrated neural networks (BINNs) that can rationally infer ultrasound images directly from pre-beamforming channel-domain radiofrequency (RF) datasets. To demonstrate feasibility, a toy BINN was first designed with two 2D-convolution layers that were respectively placed both before and after an SMB layer. This toy BINN correctly updated kernel weights in all convolution layers, demonstrating efficiency in both training (PyTorch - 133 ms, TensorFlow - 22 ms) and inference (PyTorch - 4 ms, TensorFlow - 5 ms). As an application demonstration, another BINN with two RF-domain convolution layers, an SMB layer, and three image-domain convolution layers was designed to infer high-quality B-mode images in vivo from single-shot plane-wave channel RF data. When trained using 31-angle compounded plane wave images (3000 frames from 22 human volunteers), this BINN showed mean-square logarithmic error improvements of 21.3 % and 431 % in the inferred B-mode image quality respectively comparing to an image-to-image convolutional neural network (CNN) and an RF-to-image CNN with the same number of layers and learnable parameters (3,777). Overall, by including an SMB layer to adopt prior knowledge of DAS beamforming, BINN shows potential as a new type of informed machine learning framework for ultrasound imaging.

摘要

稀疏矩阵波束形成(SMB)是一种将延迟和求和(DAS)波束形成重新表述为单个稀疏矩阵乘法的计算高效方法。这种重新表述可能与已经支持稀疏矩阵操作的机器学习平台(如 TensorFlow 和 PyTorch)很好地结合在一起。在这项工作中,我们使用 SMB 原理提出了波束形成集成神经网络(BINN)的开发,该网络可以从预波束形成的通道域射频(RF)数据集中合理地推断超声图像。为了展示可行性,首先设计了一个具有两个 2D 卷积层的玩具 BINN,这两个卷积层分别位于 SMB 层之前和之后。这个玩具 BINN 在所有卷积层中正确地更新了核权重,在训练(PyTorch - 133ms,TensorFlow - 22ms)和推断(PyTorch - 4ms,TensorFlow - 5ms)方面都表现出了效率。作为应用演示,设计了另一个具有两个 RF 域卷积层、一个 SMB 层和三个图像域卷积层的 BINN,从单次平面波通道 RF 数据中推断体内高质量 B 模式图像。当使用 31 个角度合成平面波图像(来自 22 个志愿者的 3000 个帧)进行训练时,与具有相同数量的层和可学习参数(3777)的图像到图像卷积神经网络(CNN)和 RF 到图像 CNN 相比,该 BINN 在推断的 B 模式图像质量方面分别提高了 21.3%和 431%。总体而言,通过包括 SMB 层以采用 DAS 波束形成的先验知识,BINN 显示出作为一种新的超声成像的有信息的机器学习框架的潜力。

相似文献

1
Beamforming-integrated neural networks for ultrasound imaging.基于波束形成的神经网络超声成像技术
Ultrasonics. 2025 Jan;145:107474. doi: 10.1016/j.ultras.2024.107474. Epub 2024 Oct 3.
3
Beamforming and Speckle Reduction Using Neural Networks.基于神经网络的波束形成和散斑抑制。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 May;66(5):898-910. doi: 10.1109/TUFFC.2019.2903795. Epub 2019 Mar 8.
8
Compressed Fourier-Domain Convolutional Beamforming for Sub-Nyquist Ultrasound Imaging.压缩域傅里叶域卷积波束形成用于亚奈奎斯特超声成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):489-499. doi: 10.1109/TUFFC.2021.3123079. Epub 2022 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验