Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
Dev Cell. 2024 Oct 7;59(19):2549-2565. doi: 10.1016/j.devcel.2024.09.004.
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
线粒体被早期真核生物所摄取,建立了基于细胞器的生物化学,并使后生动物得以发展。不同的线粒体生物化学对于生命是必不可少的,通过线粒体动力学对其进行的动态平衡控制支持了细胞器的质量和功能。线粒体与众多受调控的细胞死亡(RCD)途径的相互作用控制着细胞死亡的决定。在这篇综述中,我们将重点关注细胞凋亡和铁死亡这两种不同形式的 RCD,它们利用不同的信号来杀死靶向细胞。我们将强调参与线粒体动力学的蛋白质和过程如何维持具有生物化学多样性的亚细胞区室,以支持细胞凋亡和铁死亡机制,以及通过细胞器生物化学和死亡决定的双重控制来统一不同的 RCD 途径。