Mingmuang Yasumin, Chanlek Narong, Takesada Masaki, Harnchana Viyada, Jarernboon Wirat, Moontragoon Pairot, Srepusharawoot Pornjuk, Swatsitang Ekaphan, Thongbai Prasit
Department of Physics, Faculty of Science, Giant Dielectric and Computational Design Research Group (GD-CDR), Khon Kaen University, Khon Kaen, 40002, Thailand.
Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
Sci Rep. 2024 Oct 8;14(1):23406. doi: 10.1038/s41598-024-73732-x.
Aliovalent dopant codoped rutile-TiO materials have garnered attention due to their excellent performance properties, characterized by low loss tangent (tanδ), high dielectric permittivity (ε'), and stable ε' over a broad temperature range. This performance is primarily due to the electron-pinned defect-dipoles (EPDDs) of the complex defects [Formula: see text]Ti-[Formula: see text]TiB. Notably, the excellent dielectric properties in ZrTaTiO (Zr-TTO) ceramics can be achieved using the traditional mixed oxide method without the EPDDs, due to the absence of A (acceptor doping ions). Instead, the existence of localized free electrons and oxygen vacancies ([Formula: see text]) in Zr-TTO structures, due to doping ions and the sintering process, was confirmed by X-ray photoelectron and Raman spectroscopies. These ceramics exhibited ε'~ 2 × 10 and tanδ < 0.03 at 1 kHz and 25 °C in the 2.5-10%Zr-TTO samples. Moreover, all ceramics demonstrated a maximum ε' change (∆ε') of less than ±15% over the temperature range suitable for X7R and X8R type ceramic capacitors. Significantly, the change in ε' related to relative humility was calculated to be less than ±0.5% over the range of 50-95% RH, indicating the environmental stability of the dielectric properties, which is essential for capacitor applications. Investigations suggested that at least four mechanisms contributed to this system: the intrinsic effect of ionic polarization, Ti · e -[Formula: see text]- Ti · e and Ti · e - [Formula: see text] defects, interfacial polarization at insulating grain boundaries, and non-Ohmic contact between the surface sample and the metal electrode.
异价掺杂共掺杂的金红石型TiO材料因其优异的性能而备受关注,其特点是低损耗角正切(tanδ)、高介电常数(ε')以及在很宽的温度范围内ε'稳定。这种性能主要归因于复合缺陷[公式:见原文]Ti-[公式:见原文]TiB的电子钉扎缺陷偶极子(EPDDs)。值得注意的是,ZrTaTiO(Zr-TTO)陶瓷中优异的介电性能可以通过传统的混合氧化物方法实现,且不存在EPDDs,这是由于不存在A(受主掺杂离子)。相反,通过X射线光电子能谱和拉曼光谱证实,由于掺杂离子和烧结过程,Zr-TTO结构中存在局域自由电子和氧空位([公式:见原文])。在2.5-10%Zr-TTO样品中,这些陶瓷在1kHz和25°C时表现出ε'~2×10且tanδ<0.03。此外,所有陶瓷在适用于X7R和X8R型陶瓷电容器的温度范围内,ε'的最大变化(∆ε')小于±15%。重要的是,在50-95%RH范围内,与相对湿度相关的ε'变化经计算小于±0.5%,这表明介电性能的环境稳定性,这对于电容器应用至关重要。研究表明,至少有四种机制促成了该体系:离子极化的本征效应、Ti·e-[公式:见原文]-Ti·e和Ti·e-[公式:见原文]缺陷、绝缘晶界处的界面极化以及表面样品与金属电极之间的非欧姆接触。