Suppr超能文献

通过自然语言处理和概率语言模型进行可扩展的事件检测。

Scalable incident detection via natural language processing and probabilistic language models.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

出版信息

Sci Rep. 2024 Oct 8;14(1):23429. doi: 10.1038/s41598-024-72756-7.

Abstract

Post marketing safety surveillance depends in part on the ability to detect concerning clinical events at scale. Spontaneous reporting might be an effective component of safety surveillance, but it requires awareness and understanding among healthcare professionals to achieve its potential. Reliance on readily available structured data such as diagnostic codes risks under-coding and imprecision. Clinical textual data might bridge these gaps, and natural language processing (NLP) has been shown to aid in scalable phenotyping across healthcare records in multiple clinical domains. In this study, we developed and validated a novel incident phenotyping approach using unstructured clinical textual data agnostic to Electronic Health Record (EHR) and note type. It's based on a published, validated approach (PheRe) used to ascertain social determinants of health and suicidality across entire healthcare records. To demonstrate generalizability, we validated this approach on two separate phenotypes that share common challenges with respect to accurate ascertainment: (1) suicide attempt; (2) sleep-related behaviors. With samples of 89,428 records and 35,863 records for suicide attempt and sleep-related behaviors, respectively, we conducted silver standard (diagnostic coding) and gold standard (manual chart review) validation. We showed Area Under the Precision-Recall Curve of ~ 0.77 (95% CI 0.75-0.78) for suicide attempt and AUPR ~ 0.31 (95% CI 0.28-0.34) for sleep-related behaviors. We also evaluated performance by coded race and demonstrated differences in performance by race differed across phenotypes. Scalable phenotyping models, like most healthcare AI, require algorithmovigilance and debiasing prior to implementation.

摘要

上市后安全性监测部分依赖于大规模检测相关临床事件的能力。自发报告可能是安全性监测的有效组成部分,但要发挥其潜力,需要医疗保健专业人员具备意识和理解。依赖现成的结构化数据(如诊断代码)存在编码不足和不精确的风险。临床文本数据可能会弥补这些差距,并且自然语言处理 (NLP) 已被证明有助于在多个临床领域的医疗记录中进行可扩展的表型分析。在这项研究中,我们开发并验证了一种新的基于无结构临床文本数据的事件表型分析方法,该方法与电子健康记录 (EHR) 和注释类型无关。它基于一种已发布的、经过验证的方法(PheRe),用于确定整个医疗记录中的健康社会决定因素和自杀倾向。为了证明其通用性,我们在两个具有准确确定共同挑战的分离表型上验证了这种方法:(1)自杀企图;(2)睡眠相关行为。对于自杀企图和睡眠相关行为,我们分别使用了 89428 条记录和 35863 条记录进行银标准(诊断编码)和金标准(手动图表审查)验证。我们展示了自杀企图的精度-召回曲线下面积(AUPR)约为 0.77(95%CI 0.75-0.78),睡眠相关行为的 AUPR 约为 0.31(95%CI 0.28-0.34)。我们还通过编码种族评估了性能,并表明不同种族的表型之间存在性能差异。像大多数医疗保健 AI 一样,可扩展的表型分析模型在实施之前需要算法监控和去偏置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a9/11461638/e1c71b696f05/41598_2024_72756_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验