Am J Epidemiol. 2023 Feb 1;192(2):283-295. doi: 10.1093/aje/kwac182.
We sought to determine whether machine learning and natural language processing (NLP) applied to electronic medical records could improve performance of automated health-care claims-based algorithms to identify anaphylaxis events using data on 516 patients with outpatient, emergency department, or inpatient anaphylaxis diagnosis codes during 2015-2019 in 2 integrated health-care institutions in the Northwest United States. We used one site's manually reviewed gold-standard outcomes data for model development and the other's for external validation based on cross-validated area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and sensitivity. In the development site 154 (64%) of 239 potential events met adjudication criteria for anaphylaxis compared with 180 (65%) of 277 in the validation site. Logistic regression models using only structured claims data achieved a cross-validated AUC of 0.58 (95% CI: 0.54, 0.63). Machine learning improved cross-validated AUC to 0.62 (0.58, 0.66); incorporating NLP-derived covariates further increased cross-validated AUCs to 0.70 (0.66, 0.75) in development and 0.67 (0.63, 0.71) in external validation data. A classification threshold with cross-validated PPV of 79% and cross-validated sensitivity of 66% in development data had cross-validated PPV of 78% and cross-validated sensitivity of 56% in external data. Machine learning and NLP-derived data improved identification of validated anaphylaxis events.
我们试图确定机器学习和自然语言处理(NLP)应用于电子病历是否可以改善基于自动医疗保健索赔的算法识别过敏反应事件的性能,该算法使用了 2015 年至 2019 年期间美国西北部 2 家综合医疗机构中 516 例门诊、急诊或住院过敏反应诊断代码患者的数据。我们使用一个站点的手动审查金标准结果数据进行模型开发,并使用另一个站点的数据进行外部验证,验证方法是基于交叉验证的接收者操作特征曲线(AUC)下面积、阳性预测值(PPV)和敏感性。在开发站点中,239 个潜在事件中有 154 个(64%)符合过敏反应的裁决标准,而在验证站点中,277 个事件中有 180 个(65%)符合。仅使用结构化索赔数据的逻辑回归模型的交叉验证 AUC 为 0.58(95%CI:0.54,0.63)。机器学习将交叉验证 AUC 提高到 0.62(0.58,0.66);纳入 NLP 衍生的协变量进一步将开发中的交叉验证 AUC 提高到 0.70(0.66,0.75),将外部验证数据中的交叉验证 AUC 提高到 0.67(0.63,0.71)。在开发数据中,具有交叉验证 PPV 为 79%和交叉验证敏感性为 66%的分类阈值在外部数据中具有交叉验证 PPV 为 78%和交叉验证敏感性为 56%。机器学习和 NLP 衍生数据改善了已验证过敏反应事件的识别。