Zheng Yuanfeng, Gao Yanfei
Zhongshan Torch Polytechnic, Guangdong, China.
Sci Rep. 2024 Oct 8;14(1):23472. doi: 10.1038/s41598-024-74229-3.
Specular highlight removal ensures the acquisition of high-quality images, which finds its important applications in stereo matching, text recognition and image segmentation. In order to prevent the leakage of images containing personal information, such as identification card (ID) photos, clients often train specular highlight removal models using local data resulting in a lack of precision and generalization of the trained model. To address this challenge, this paper introduces a new method to remove highlight in images using federated learning (FL) and attention generative adversarial network (AttGAN). Specifically, the former builds a global model in the central server and updates the global model by aggregating model parameters of clients. This process does not involve the transmission of image data, which enhances the privacy of clients; the later combining attention mechanisms and generative adversarial network aims to improve the quality of highlight removal by focusing on key image regions, resulting in more realistic and visually pleasing results. The proposed FL-AttGAN method is numerically evaluated, using SD1, SD2 amd RD datasets. The results show that the proposed FL-AttGAN outperforms existent methods.
镜面高光去除可确保获取高质量图像,这在立体匹配、文本识别和图像分割中具有重要应用。为防止包含个人信息的图像(如身份证照片)泄露,客户通常使用本地数据训练镜面高光去除模型,导致训练模型缺乏精度和泛化能力。为应对这一挑战,本文介绍一种使用联邦学习(FL)和注意力生成对抗网络(AttGAN)去除图像高光的新方法。具体而言,前者在中央服务器中构建全局模型,并通过聚合客户端的模型参数来更新全局模型。此过程不涉及图像数据传输,增强了客户端的隐私性;后者将注意力机制与生成对抗网络相结合,旨在通过关注关键图像区域来提高高光去除质量,从而产生更逼真、视觉效果更好的结果。使用SD1、SD2和RD数据集对所提出的FL-AttGAN方法进行了数值评估。结果表明,所提出的FL-AttGAN优于现有方法。