Lavarda Giulia, Sharma Ashish, Beslać Marko, Jansen Stef A H, Meskers Stefan C J, Friend Richard H, Rao Akshay, Meijer E W
Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB30HE, United Kingdom.
J Am Chem Soc. 2024 Oct 23;146(42):28985-28993. doi: 10.1021/jacs.4c09844. Epub 2024 Oct 8.
Singlet fission (SF), which involves the conversion of a singlet excited state into two triplet excitons, holds great potential to boost the efficiency of photovoltaics. However, losses due to triplet-triplet annihilation hamper the efficient harvesting of SF-generated triplet excitons, which limits an effective implementation in solar energy conversion schemes. A fundamental understanding of the underlying structure-property relationships is thus crucial to define design principles for cutting-edge SF materials, yet it remains elusive. Herein, we harness helical supramolecular polymers decorated with pentacene side groups to elucidate intermolecular SF dynamics in solution and promote the formation of long-lived mobile triplets. By leveraging the hydrogen bonding-driven assembly of benzene-1,3,5-tricarboxamide (BTA) cores into one-dimensional scaffolds, we direct the organization of appended pentacene motifs into long-range ordered helical frameworks. Dynamic interactions between weakly coupled SF pendants mediate singlet conversion within hundreds of picoseconds, affording triplet quantum yields well above 100%. Moreover, analysis of triplet dynamics with a Monte Carlo simulation model reveals that triplet diffusion along the supramolecular fibers is favored over annihilation, resulting in independent triplets exhibiting considerably slow decay on the time scale of tens of microseconds. The molecular packing within the assembly is tuned by subtle changes in monomer design to increase the rate and efficiency of SF while ensuring exceptionally long-lived mobile triplets, allowing to maintain triplet quantum yields exceeding 100% for at least 100 ns. This work opens new opportunities to exploit self-assembled supramolecular polymers as functional templates to achieve long-lived SF-generated triplets.
单线态裂变(SF)涉及将单重态激发态转化为两个三重态激子,在提高光伏效率方面具有巨大潜力。然而,三重态-三重态湮灭导致的损失阻碍了对SF产生的三重态激子的有效捕获,这限制了其在太阳能转换方案中的有效应用。因此,对潜在的结构-性质关系有基本的了解对于定义前沿SF材料的设计原则至关重要,但目前仍不清楚。在此,我们利用带有并五苯侧基的螺旋超分子聚合物来阐明溶液中的分子间SF动力学,并促进长寿命移动三重态的形成。通过利用氢键驱动的苯-1,3,5-三甲酰胺(BTA)核心组装成一维支架,我们将附加的并五苯基序组织成长程有序的螺旋框架。弱耦合SF侧基之间的动态相互作用在数百皮秒内介导单重态转换,产生远高于100%的三重态量子产率。此外,用蒙特卡罗模拟模型对三重态动力学的分析表明,三重态沿超分子纤维的扩散比湮灭更有利,导致独立的三重态在数十微秒的时间尺度上表现出相当缓慢的衰减。通过对单体设计进行细微改变来调整组装体中的分子堆积,以提高SF的速率和效率,同时确保异常长寿命的移动三重态,从而使三重态量子产率在至少100 ns内保持超过100%。这项工作为利用自组装超分子聚合物作为功能模板来实现长寿命的SF产生的三重态开辟了新的机会。