Luo Qianwen, Lu Meng, Butt Hamza, Lytal Nicholas, Du Ruofei, Jiang Hongmei, An Lingling
Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States.
Graduate Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, United States.
Front Genet. 2024 Sep 24;15:1417533. doi: 10.3389/fgene.2024.1417533. eCollection 2024.
Metagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.
宏基因组时间进程研究为微生物系统的动态变化提供了有价值的见解,并且随着下一代测序技术成本的降低而越来越受欢迎。标准化是在进行下游分析之前常见但关键的预处理步骤。据我们所知,目前尚无报道的方法可对微生物时间序列数据进行适当标准化。我们提出了TimeNorm,这是一种新颖的标准化方法,它考虑了时间进程微生物组数据中的组成特性和时间依赖性。它是第一种分别用于在同一时间点内(时间内标准化)和跨时间点(桥梁标准化)对时间序列数据进行标准化的方法。时间内标准化基于共同的主导特征对相同条件下的微生物样本进行标准化。桥梁标准化检测并利用两个相邻时间点之间一组最稳定的特征进行标准化。通过全面的模拟研究和实际研究应用,我们证明TimeNorm优于现有的标准化方法,并提高了下游差异丰度分析的效能。