Suppr超能文献

基于蒙特卡洛方法从计算机断层扫描图像模拟虚拟三维和四维锥束计算机断层扫描:一种端到端框架及基于深度学习的加速策略。

Monte Carlo-based simulation of virtual 3 and 4-dimensional cone-beam computed tomography from computed tomography images: An end-to-end framework and a deep learning-based speedup strategy.

作者信息

Madesta Frederic, Sentker Thilo, Rohling Clemens, Gauer Tobias, Schmitz Rüdiger, Werner René

机构信息

Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.

Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.

出版信息

Phys Imaging Radiat Oncol. 2024 Sep 12;32:100644. doi: 10.1016/j.phro.2024.100644. eCollection 2024 Oct.

Abstract

BACKGROUND AND PURPOSE

In radiotherapy, precise comparison of fan-beam computed tomography (CT) and cone-beam CT (CBCT) arises as a commonplace, yet intricate task. This paper proposes a publicly available end-to-end pipeline featuring an intrinsic deep-learning-based speedup technique for generating virtual 3D and 4D CBCT from CT images.

MATERIALS AND METHODS

Physical properties, derived from CT intensity information, are obtained through automated whole-body segmentation of organs and tissues. Subsequently, Monte Carlo (MC) simulations generate CBCT X-ray projections for a full circular arc around the patient employing acquisition settings matched with a clinical CBCT scanner (modeled according to Varian TrueBeam specifications). In addition to 3D CBCT reconstruction, a 4D CBCT can be simulated with a fully time-resolved MC simulation by incorporating respiratory correspondence modeling. To address the computational complexity of MC simulations, a deep-learning-based speedup technique is developed and integrated that uses projection data simulated with a reduced number of photon histories to predict a projection that matches the image characteristics and signal-to-noise ratio of the reference simulation.

RESULTS

MC simulations with default parameter setting yield CBCT images with high agreement to ground truth data acquired by a clinical CBCT scanner. Furthermore, the proposed speedup technique achieves up to 20-fold speedup while preserving image features and resolution compared to the reference simulation.

CONCLUSION

The presented MC pipeline and speedup approach provide an openly accessible end-to-end framework for researchers and clinicians to investigate limitations of image-guided radiation therapy workflows built on both (4D) CT and CBCT images.

摘要

背景与目的

在放射治疗中,扇形束计算机断层扫描(CT)与锥形束CT(CBCT)的精确比较是一项常见但复杂的任务。本文提出了一种公开可用的端到端流程,其具有基于深度学习的固有加速技术,用于从CT图像生成虚拟3D和4D CBCT。

材料与方法

通过对器官和组织进行自动全身分割,从CT强度信息中获取物理属性。随后,蒙特卡罗(MC)模拟使用与临床CBCT扫描仪匹配的采集设置(根据瓦里安TrueBeam规格建模),为围绕患者的完整圆弧生成CBCT X射线投影。除了3D CBCT重建外,还可以通过纳入呼吸对应建模,用全时间分辨的MC模拟来模拟4D CBCT。为了解决MC模拟的计算复杂性,开发并集成了一种基于深度学习的加速技术,该技术使用用减少数量的光子历史模拟的投影数据来预测与参考模拟的图像特征和信噪比相匹配的投影。

结果

默认参数设置的MC模拟产生的CBCT图像与临床CBCT扫描仪获取的真实数据高度一致。此外,与参考模拟相比,所提出的加速技术在保持图像特征和分辨率的同时,实现了高达20倍的加速。

结论

所提出的MC流程和加速方法为研究人员和临床医生提供了一个开放获取的端到端框架,以研究基于(4D)CT和CBCT图像的图像引导放射治疗工作流程的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19fc/11458955/e8b3a88b1e41/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验