Suppr超能文献

基于物理数据增强的多任务 3D CBCT-to-CT 转换和危及器官分割。

Multitask 3D CBCT-to-CT translation and organs-at-risk segmentation using physics-based data augmentation.

机构信息

Department of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

出版信息

Med Phys. 2021 Sep;48(9):5130-5141. doi: 10.1002/mp.15083. Epub 2021 Aug 9.

Abstract

PURPOSE

In current clinical practice, noisy and artifact-ridden weekly cone beam computed tomography (CBCT) images are only used for patient setup during radiotherapy. Treatment planning is performed once at the beginning of the treatment using high-quality planning CT (pCT) images and manual contours for organs-at-risk (OARs) structures. If the quality of the weekly CBCT images can be improved while simultaneously segmenting OAR structures, this can provide critical information for adapting radiotherapy mid-treatment as well as for deriving biomarkers for treatment response.

METHODS

Using a novel physics-based data augmentation strategy, we synthesize a large dataset of perfectly/inherently registered pCT and synthetic-CBCT pairs for locally advanced lung cancer patient cohort, which are then used in a multitask three-dimensional (3D) deep learning framework to simultaneously segment and translate real weekly CBCT images to high-quality pCT-like images.

RESULTS

We compared the synthetic CT and OAR segmentations generated by the model to real pCT and manual OAR segmentations and showed promising results. The real week 1 (baseline) CBCT images which had an average mean absolute error (MAE) of 162.77 HU compared to pCT images are translated to synthetic CT images that exhibit a drastically improved average MAE of 29.31 HU and average structural similarity of 92% with the pCT images. The average DICE scores of the 3D OARs segmentations are: lungs 0.96, heart 0.88, spinal cord 0.83, and esophagus 0.66.

CONCLUSIONS

We demonstrate an approach to translate artifact-ridden CBCT images to high-quality synthetic CT images, while simultaneously generating good quality segmentation masks for different OARs. This approach could allow clinicians to adjust treatment plans using only the routine low-quality CBCT images, potentially improving patient outcomes. Our code, data, and pre-trained models will be made available via our physics-based data augmentation library, Physics-ArX, at https://github.com/nadeemlab/Physics-ArX.

摘要

目的

在当前的临床实践中,由于存在噪声和伪影,每周进行的锥形束计算机断层扫描(CBCT)图像仅用于放射治疗期间的患者定位。在治疗开始时使用高质量的计划 CT(pCT)图像和手动勾画危及器官(OAR)结构进行一次治疗计划。如果可以在提高每周 CBCT 图像质量的同时同时对 OAR 结构进行分割,这将为治疗中期的自适应放射治疗以及为治疗反应衍生生物标志物提供关键信息。

方法

我们使用一种新的基于物理的的数据增强策略,为局部晚期肺癌患者队列合成了大量完美/固有配准的 pCT 和合成-CBCT 对数据集,然后将其用于多任务三维(3D)深度学习框架中,以同时分割和翻译真实的每周 CBCT 图像为高质量的 pCT 样图像。

结果

我们将模型生成的合成 CT 和 OAR 分割与真实的 pCT 和手动 OAR 分割进行了比较,结果令人鼓舞。与 pCT 图像相比,真实的第 1 周(基线)CBCT 图像的平均平均绝对误差(MAE)为 162.77 HU,而转换为合成 CT 图像后,MAE 平均大幅改善至 29.31 HU,与 pCT 图像的平均结构相似度为 92%。3D OAR 分割的平均 DICE 分数为:肺 0.96、心脏 0.88、脊髓 0.83 和食管 0.66。

结论

我们展示了一种将存在伪影的 CBCT 图像转换为高质量合成 CT 图像的方法,同时为不同的 OAR 生成高质量的分割掩模。这种方法可以使临床医生仅使用常规低质量的 CBCT 图像来调整治疗计划,从而有可能改善患者的预后。我们的代码、数据和预训练模型将通过我们的基于物理的增强库 Physics-ArX 在 https://github.com/nadeemlab/Physics-ArX 上提供。

相似文献

1
Multitask 3D CBCT-to-CT translation and organs-at-risk segmentation using physics-based data augmentation.
Med Phys. 2021 Sep;48(9):5130-5141. doi: 10.1002/mp.15083. Epub 2021 Aug 9.
2
Synthetic CT-aided multiorgan segmentation for CBCT-guided adaptive pancreatic radiotherapy.
Med Phys. 2021 Nov;48(11):7063-7073. doi: 10.1002/mp.15264. Epub 2021 Oct 13.
4
Multiresolution residual deep neural network for improving pelvic CBCT image quality.
Med Phys. 2022 Mar;49(3):1522-1534. doi: 10.1002/mp.15460. Epub 2022 Jan 27.
6
Generalizable cone beam CT esophagus segmentation using physics-based data augmentation.
Phys Med Biol. 2021 Mar 4;66(6):065008. doi: 10.1088/1361-6560/abe2eb.
8
Synthetic CT generation from CBCT images via unsupervised deep learning.
Phys Med Biol. 2021 May 31;66(11). doi: 10.1088/1361-6560/ac01b6.
9
Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
Med Phys. 2023 Feb;50(2):879-893. doi: 10.1002/mp.16017. Epub 2022 Oct 18.

引用本文的文献

2
Artificial intelligence for treatment delivery: image-guided radiotherapy.
Strahlenther Onkol. 2025 Mar;201(3):283-297. doi: 10.1007/s00066-024-02277-9. Epub 2024 Aug 13.
3
Progressive auto-segmentation for cone-beam computed tomography-based online adaptive radiotherapy.
Phys Imaging Radiat Oncol. 2024 Jul 14;31:100610. doi: 10.1016/j.phro.2024.100610. eCollection 2024 Jul.
5
Accurate object localization facilitates automatic esophagus segmentation in deep learning.
Radiat Oncol. 2024 May 12;19(1):55. doi: 10.1186/s13014-024-02448-z.
7
Zero-Shot Medical Image Translation via Frequency-Guided Diffusion Models.
IEEE Trans Med Imaging. 2024 Mar;43(3):980-993. doi: 10.1109/TMI.2023.3325703. Epub 2024 Mar 5.
8
Inter-observer variability in library plan selection on iterative CBCT and synthetic CT images of cervical cancer patients.
J Appl Clin Med Phys. 2023 Nov;24(11):e14170. doi: 10.1002/acm2.14170. Epub 2023 Oct 3.
10
Improving synthetic CT accuracy by combining the benefits of multiple normalized preprocesses.
J Appl Clin Med Phys. 2023 Aug;24(8):e14004. doi: 10.1002/acm2.14004. Epub 2023 Apr 24.

本文引用的文献

1
Generalizable cone beam CT esophagus segmentation using physics-based data augmentation.
Phys Med Biol. 2021 Mar 4;66(6):065008. doi: 10.1088/1361-6560/abe2eb.
3
Synthetic CT generation from CBCT images via deep learning.
Med Phys. 2020 Mar;47(3):1115-1125. doi: 10.1002/mp.13978. Epub 2020 Jan 13.
4
Visual enhancement of Cone-beam CT by use of CycleGAN.
Med Phys. 2020 Mar;47(3):998-1010. doi: 10.1002/mp.13963. Epub 2020 Jan 3.
7
Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017.
Med Phys. 2018 Oct;45(10):4568-4581. doi: 10.1002/mp.13141. Epub 2018 Sep 19.
8
Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography.
IEEE Trans Med Imaging. 2018 Jun;37(6):1370-1381. doi: 10.1109/TMI.2018.2823083.
9
Reduction of Beam Hardening Artifacts in Cone-Beam CT Imaging via SMART-RECON Algorithm.
Proc SPIE Int Soc Opt Eng. 2016;9783. doi: 10.1117/12.2216882. Epub 2016 Mar 22.
10
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验